@article{VUU_2022_32_4_a6,
author = {A. V. Chernov},
title = {On totally global solvability of evolutionary {Volterra} equation of the second kind},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {593--614},
year = {2022},
volume = {32},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_4_a6/}
}
TY - JOUR AU - A. V. Chernov TI - On totally global solvability of evolutionary Volterra equation of the second kind JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2022 SP - 593 EP - 614 VL - 32 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2022_32_4_a6/ LA - ru ID - VUU_2022_32_4_a6 ER -
%0 Journal Article %A A. V. Chernov %T On totally global solvability of evolutionary Volterra equation of the second kind %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2022 %P 593-614 %V 32 %N 4 %U http://geodesic.mathdoc.fr/item/VUU_2022_32_4_a6/ %G ru %F VUU_2022_32_4_a6
A. V. Chernov. On totally global solvability of evolutionary Volterra equation of the second kind. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 4, pp. 593-614. http://geodesic.mathdoc.fr/item/VUU_2022_32_4_a6/
[1] Chernov A.V., “Ob odnom mazhorantnom priznake totalnogo sokhraneniya globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 2011, no. 3, 95–107
[2] Chernov A.V., “O totalnom sokhranenii razreshimosti upravlyaemogo uravneniya tipa Gammershteina s neizotonnym i nemazhoriruemym operatorom”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 2017, no. 6, 83–94
[3] Chernov A.V., “Mazhorantnyi priznak pervogo poryadka totalno globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 28:4 (2018), 531–548 | DOI
[4] Chernov A.V., “O totalno globalnoi razreshimosti upravlyaemogo operatornogo uravneniya vtorogo roda”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 30:1 (2020), 92–111 | DOI | MR
[5] Chernov A.V., “O nevolterrovom priznake pervogo poryadka sokhraneniya razreshimosti upravlyaemogo uravneniya tipa Gammershteina”, Differentsialnye uravneniya, 56:2 (2020), 269–280 | DOI
[6] Chernov A.V., “O totalno globalnoi razreshimosti evolyutsionnogo uravneniya s monotonnym nelineinym operatorom”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 32:1 (2022), 130–149 | DOI | MR
[7] Chernov A.V., “Operatornye uravneniya II roda: teoremy o suschestvovanii i edinstvennosti resheniya i o sokhranenii razreshimosti”, Differentsialnye uravneniya, 58:5 (2022), 656–668
[8] Kalantarov V.K., Ladyzhenskaya O.A., “O vozniknovenii kollapsov dlya kvazilineinykh uravnenii parabolicheskogo i giperbolicheskogo tipov”, Zapiski nauchnykh seminarov LOMI, 69, 1977, 77–102
[9] Sumin V.I., “Ob obosnovanii gradientnykh metodov dlya raspredelennykh zadach optimalnogo upravleniya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 30:1 (1990), 3–21
[10] Sumin V.I., Funktsionalnye volterrovy uravneniya v teorii optimalnogo upravleniya raspredelennymi sistemami, v. 1, Volterrovy uravneniya i upravlyaemye nachalno-kraevye zadachi, Izd-vo NNGU, Nizhnii Novgorod, 1992
[11] Korpusov M.O., Sveshnikov A.G., “O «razrushenii» resheniya silno nelineinogo uravneniya psevdoparabolicheskogo tipa s dvoinoi nelineinostyu”, Matematicheskie zametki, 79:6 (2006), 879–899 | DOI
[12] Kobayashi T., Pecher H., Shibata Y., “On a global in time existence theorem of smooth solutions to a nonlinear wave equation with viscosity”, Mathematische Annalen, 296:2 (1993), 215–234 | DOI | MR
[13] Lu G., “Global existence and blow-up for a class of semilinear parabolic systems: A Cauchy problem”, Nonlinear Analysis: Theory, Methods and Applications, 24:8 (1995), 1193–1206 | DOI | MR
[14] Cavalcanti M.M., Domingos Cavalcanti V.N., Soriano J.A., “On existence and asymptotic stability of solutions of the degenerate wave equation with nonlinear boundary conditions”, Journal of Mathematical Analysis and Applications, 281:1 (2003), 108–124 | DOI | MR
[15] Saito H., “Global solvability of the Navier-Stokes equations with a free surface in the maximal regularity $L_p$-$L_q$ class”, Journal of Differential Equations, 264:3 (2018), 1475–1520 | DOI | MR
[16] Seregin G.A., Shilkin T.N., “Teoremy liuvillevskogo tipa dlya uravnenii Nave-Stoksa”, Uspekhi matematicheskikh nauk, 73:4 (442) (2018), 103–170 | DOI
[17] Vulikh B.Z., Kratkii kurs teorii funktsii veschestvennoi peremennoi, Nauka, M., 1965 | Zbl
[18] Kantorovich L.V., Akilov G.P., Funktsionalnyi analiz, Nauka, M., 1984 | MR
[19] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972
[20] Sobolev S.L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR
[21] Pavlova M.F., Timerbaev M.R., Prostranstva Soboleva (teoremy vlozheniya), KGU, Kazan, 2010
[22] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978