On totally global solvability of evolutionary Volterra equation of the second kind
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 4, pp. 593-614 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $H$ be a Banach space, $T>0$, $\sigma\in[1;\infty]$ and let $W[0;\tau]$, $\tau\in(0;T)$, be the scale of Banach spaces which is induced by restrictions from a space $W=W[0;T]$; $\mathcal{F}\colon L_\sigma(0,T;H)\to W$ be a Volterra operator (an operator with Volterra property); $f[u] \colon W\to L_\sigma(0,T;H)$ be a controlled Volterra operator depending on a control $u\in U$. We consider the equation as follows $$x=\mathcal{F}\bigl( f[u](x)\bigr),\quad x\in W.$$ For this equation we establish signs of totally (with respect to a set of admissible controls) global solvability subject to global solvability of some functional integral inequality in the space $\mathbb{R}$. In many particular cases the above inequality may be realized as the Cauchy problem associated with an ordinary differential equation. In fact, the analogous result which was obtained by the author formerly is developed, this time under other hypotheses, more convenient for practical usage (although in more particular statement). Separately, we consider the cases of compact embedding of spaces and continuity of the operators $\mathcal{F}$, $f[u]$ (such an approach has not been used by the author formerly), from one hand, and of local integral analogue of the Lipschitz condition with respect to that operators, from another hand. In the second case we prove also the uniqueness of solution. In the first case we use Schauder theorem and in the second case we apply the technique of solution continuation along with the time axis (id est continuation along with a Volterra chain). Finally, as an example, we consider a nonlinear wave equation in the space $\mathbb{R}^n$.
Keywords: nonlinear evolutionary Volterra equation in a Banach space, nonlinear wave equation, totally global solvability, uniqueness of solution.
@article{VUU_2022_32_4_a6,
     author = {A. V. Chernov},
     title = {On totally global solvability of evolutionary {Volterra} equation of the second kind},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {593--614},
     year = {2022},
     volume = {32},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_4_a6/}
}
TY  - JOUR
AU  - A. V. Chernov
TI  - On totally global solvability of evolutionary Volterra equation of the second kind
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2022
SP  - 593
EP  - 614
VL  - 32
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2022_32_4_a6/
LA  - ru
ID  - VUU_2022_32_4_a6
ER  - 
%0 Journal Article
%A A. V. Chernov
%T On totally global solvability of evolutionary Volterra equation of the second kind
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2022
%P 593-614
%V 32
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2022_32_4_a6/
%G ru
%F VUU_2022_32_4_a6
A. V. Chernov. On totally global solvability of evolutionary Volterra equation of the second kind. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 4, pp. 593-614. http://geodesic.mathdoc.fr/item/VUU_2022_32_4_a6/

[1] Chernov A.V., “Ob odnom mazhorantnom priznake totalnogo sokhraneniya globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 2011, no. 3, 95–107

[2] Chernov A.V., “O totalnom sokhranenii razreshimosti upravlyaemogo uravneniya tipa Gammershteina s neizotonnym i nemazhoriruemym operatorom”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 2017, no. 6, 83–94

[3] Chernov A.V., “Mazhorantnyi priznak pervogo poryadka totalno globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 28:4 (2018), 531–548 | DOI

[4] Chernov A.V., “O totalno globalnoi razreshimosti upravlyaemogo operatornogo uravneniya vtorogo roda”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 30:1 (2020), 92–111 | DOI | MR

[5] Chernov A.V., “O nevolterrovom priznake pervogo poryadka sokhraneniya razreshimosti upravlyaemogo uravneniya tipa Gammershteina”, Differentsialnye uravneniya, 56:2 (2020), 269–280 | DOI

[6] Chernov A.V., “O totalno globalnoi razreshimosti evolyutsionnogo uravneniya s monotonnym nelineinym operatorom”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 32:1 (2022), 130–149 | DOI | MR

[7] Chernov A.V., “Operatornye uravneniya II roda: teoremy o suschestvovanii i edinstvennosti resheniya i o sokhranenii razreshimosti”, Differentsialnye uravneniya, 58:5 (2022), 656–668

[8] Kalantarov V.K., Ladyzhenskaya O.A., “O vozniknovenii kollapsov dlya kvazilineinykh uravnenii parabolicheskogo i giperbolicheskogo tipov”, Zapiski nauchnykh seminarov LOMI, 69, 1977, 77–102

[9] Sumin V.I., “Ob obosnovanii gradientnykh metodov dlya raspredelennykh zadach optimalnogo upravleniya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 30:1 (1990), 3–21

[10] Sumin V.I., Funktsionalnye volterrovy uravneniya v teorii optimalnogo upravleniya raspredelennymi sistemami, v. 1, Volterrovy uravneniya i upravlyaemye nachalno-kraevye zadachi, Izd-vo NNGU, Nizhnii Novgorod, 1992

[11] Korpusov M.O., Sveshnikov A.G., “O «razrushenii» resheniya silno nelineinogo uravneniya psevdoparabolicheskogo tipa s dvoinoi nelineinostyu”, Matematicheskie zametki, 79:6 (2006), 879–899 | DOI

[12] Kobayashi T., Pecher H., Shibata Y., “On a global in time existence theorem of smooth solutions to a nonlinear wave equation with viscosity”, Mathematische Annalen, 296:2 (1993), 215–234 | DOI | MR

[13] Lu G., “Global existence and blow-up for a class of semilinear parabolic systems: A Cauchy problem”, Nonlinear Analysis: Theory, Methods and Applications, 24:8 (1995), 1193–1206 | DOI | MR

[14] Cavalcanti M.M., Domingos Cavalcanti V.N., Soriano J.A., “On existence and asymptotic stability of solutions of the degenerate wave equation with nonlinear boundary conditions”, Journal of Mathematical Analysis and Applications, 281:1 (2003), 108–124 | DOI | MR

[15] Saito H., “Global solvability of the Navier-Stokes equations with a free surface in the maximal regularity $L_p$-$L_q$ class”, Journal of Differential Equations, 264:3 (2018), 1475–1520 | DOI | MR

[16] Seregin G.A., Shilkin T.N., “Teoremy liuvillevskogo tipa dlya uravnenii Nave-Stoksa”, Uspekhi matematicheskikh nauk, 73:4 (442) (2018), 103–170 | DOI

[17] Vulikh B.Z., Kratkii kurs teorii funktsii veschestvennoi peremennoi, Nauka, M., 1965 | Zbl

[18] Kantorovich L.V., Akilov G.P., Funktsionalnyi analiz, Nauka, M., 1984 | MR

[19] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972

[20] Sobolev S.L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR

[21] Pavlova M.F., Timerbaev M.R., Prostranstva Soboleva (teoremy vlozheniya), KGU, Kazan, 2010

[22] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978