Pseudo semi-projective modules and endomorphism rings
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 4, pp. 557-568 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A module $M$ is called pseudo semi-projective if, for all $\alpha,\beta\in \mathrm{End}_R(M)$ with $\mathrm{Im}(\alpha)=\mathrm{Im}(\beta)$, there holds $\alpha\, \mathrm{End}_R(M)=\beta\, \mathrm{End}_R(M)$. In this paper, we study some properties of pseudo semi-projective modules and their endomorphism rings. It is shown that a ring $ R$ is a semilocal ring if and only if each semiprimitive finitely generated right $R$-module is pseudo semi-projective. Moreover, we show that if $M$ is a coretractable pseudo semi-projective module with finite hollow dimension, then $\mathrm{End}_R(M)$ is a semilocal ring and every maximal right ideal of $\mathrm{End}_R(M)$ has the form $\{s \in \mathrm{End}_R(M) | \mathrm{Im}(s) + \mathrm{Ker}(h)\ne M\}$ for some endomorphism $h$ of $M$ with $h(M)$ hollow.
Keywords: hollow module, finite hollow dimension, perfect ring.
Mots-clés : pseudo semi-projective module
@article{VUU_2022_32_4_a4,
     author = {N. T. T. Ha},
     title = {Pseudo semi-projective modules and endomorphism rings},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {557--568},
     year = {2022},
     volume = {32},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_4_a4/}
}
TY  - JOUR
AU  - N. T. T. Ha
TI  - Pseudo semi-projective modules and endomorphism rings
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2022
SP  - 557
EP  - 568
VL  - 32
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2022_32_4_a4/
LA  - en
ID  - VUU_2022_32_4_a4
ER  - 
%0 Journal Article
%A N. T. T. Ha
%T Pseudo semi-projective modules and endomorphism rings
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2022
%P 557-568
%V 32
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2022_32_4_a4/
%G en
%F VUU_2022_32_4_a4
N. T. T. Ha. Pseudo semi-projective modules and endomorphism rings. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 4, pp. 557-568. http://geodesic.mathdoc.fr/item/VUU_2022_32_4_a4/

[1] Abyzov A.N., Kuin Ch.K., Tai D.D., “Dualno avtomorfizm-invariantnye moduli nad sovershennymi koltsami”, Sibirskii matematicheskii zhurnal, 58:5 (2017), 959–971 | DOI

[2] Abyzov A.N., Le V.T., Chyuong K.K., Tuganbaev A.A., “Moduli, koinvariantnye otnositelno idempotentnykh endomorfizmov svoikh nakrytii”, Sibirskii matematicheskii zhurnal, 60:6 (2019), 1191–1208 | DOI

[3] Anderson F.W., Fuller K.R., Rings and categories of modules, Springer, New York, 1992 | DOI | MR

[4] Clark J., Lomp C., Vanaja N., Wisbauer R., Lifting modules. Supplements and projectivity in module theory, Birkhäuser, Basel, 2006 | DOI | MR

[5] Guil Asensio P.A, Quynh T.C., Srivastava A., “Additive unit structure of endomorphism rings and invariance of modules”, Bulletin of Mathematical Sciences, 7:2 (2017), 229–246 | DOI | MR

[6] Hirano Y., Huynh D.V., Park J.K., “Rings characterised by semiprimitive modules”, Bulletin of the Australian Mathematical Society, 52:1 (1995), 107–116 | DOI | MR

[7] Koşan M.T., Quynh T.C., Srivastava A.K., “Rings with each right ideal automorphism-invariant”, Journal of Pure and Applied Algebra, 220:4 (2016), 1525–1537 | DOI | MR

[8] Koşan M.T., Quynh T.C., “Rings whose (proper) cyclic modules have cyclic automorphism-invariant hulls”, Applicable Algebra in Engineering, Communication and Computing, 32:3 (2021), 385–397 | DOI | MR

[9] Mohamed S.H., Müller B.J., Continous and discrete modules, Cambridge University Press, Cambridge, 1990 | DOI | MR

[10] Quynh T.C., “On pseudo semi-projective modules”, Turkish Journal of Mathematics, 37:1 (2013), 27–36 | DOI | MR

[11] Quynh T.C., Koşan M.T., “On automorphism-invariant modules”, Journal of Algebra and Its Applications, 14:05 (2015), 1550074 | DOI | MR

[12] Quynh T.C., Sanh N.V., “On quasi pseudo-GP-injective rings and modules”, Bulletin of the Malaysian Mathematical Sciences Society, 37:2 (2014), 321–332 | MR

[13] Reiter E., “A dual to the Goldie ascending chain condition on direct sums of submodules”, Bulletin of the Calcutta Mathematical Society, 73 (1981), 55–63 | MR | Zbl

[14] Tuganbaev A.A., “Automorphism-invariant non-singular rings and modules”, Journal of Algebra, 485 (2017), 247–253 | DOI | MR

[15] Wisbauer R., Foundations of module and ring theory, Gordon and Breach, Philadelphia, 1991 | MR