Mots-clés : pseudo semi-projective module
@article{VUU_2022_32_4_a4,
author = {N. T. T. Ha},
title = {Pseudo semi-projective modules and endomorphism rings},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {557--568},
year = {2022},
volume = {32},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_4_a4/}
}
N. T. T. Ha. Pseudo semi-projective modules and endomorphism rings. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 4, pp. 557-568. http://geodesic.mathdoc.fr/item/VUU_2022_32_4_a4/
[1] Abyzov A.N., Kuin Ch.K., Tai D.D., “Dualno avtomorfizm-invariantnye moduli nad sovershennymi koltsami”, Sibirskii matematicheskii zhurnal, 58:5 (2017), 959–971 | DOI
[2] Abyzov A.N., Le V.T., Chyuong K.K., Tuganbaev A.A., “Moduli, koinvariantnye otnositelno idempotentnykh endomorfizmov svoikh nakrytii”, Sibirskii matematicheskii zhurnal, 60:6 (2019), 1191–1208 | DOI
[3] Anderson F.W., Fuller K.R., Rings and categories of modules, Springer, New York, 1992 | DOI | MR
[4] Clark J., Lomp C., Vanaja N., Wisbauer R., Lifting modules. Supplements and projectivity in module theory, Birkhäuser, Basel, 2006 | DOI | MR
[5] Guil Asensio P.A, Quynh T.C., Srivastava A., “Additive unit structure of endomorphism rings and invariance of modules”, Bulletin of Mathematical Sciences, 7:2 (2017), 229–246 | DOI | MR
[6] Hirano Y., Huynh D.V., Park J.K., “Rings characterised by semiprimitive modules”, Bulletin of the Australian Mathematical Society, 52:1 (1995), 107–116 | DOI | MR
[7] Koşan M.T., Quynh T.C., Srivastava A.K., “Rings with each right ideal automorphism-invariant”, Journal of Pure and Applied Algebra, 220:4 (2016), 1525–1537 | DOI | MR
[8] Koşan M.T., Quynh T.C., “Rings whose (proper) cyclic modules have cyclic automorphism-invariant hulls”, Applicable Algebra in Engineering, Communication and Computing, 32:3 (2021), 385–397 | DOI | MR
[9] Mohamed S.H., Müller B.J., Continous and discrete modules, Cambridge University Press, Cambridge, 1990 | DOI | MR
[10] Quynh T.C., “On pseudo semi-projective modules”, Turkish Journal of Mathematics, 37:1 (2013), 27–36 | DOI | MR
[11] Quynh T.C., Koşan M.T., “On automorphism-invariant modules”, Journal of Algebra and Its Applications, 14:05 (2015), 1550074 | DOI | MR
[12] Quynh T.C., Sanh N.V., “On quasi pseudo-GP-injective rings and modules”, Bulletin of the Malaysian Mathematical Sciences Society, 37:2 (2014), 321–332 | MR
[13] Reiter E., “A dual to the Goldie ascending chain condition on direct sums of submodules”, Bulletin of the Calcutta Mathematical Society, 73 (1981), 55–63 | MR | Zbl
[14] Tuganbaev A.A., “Automorphism-invariant non-singular rings and modules”, Journal of Algebra, 485 (2017), 247–253 | DOI | MR
[15] Wisbauer R., Foundations of module and ring theory, Gordon and Breach, Philadelphia, 1991 | MR