On one problem of controlling the heating of a rod system under uncertainty
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 4, pp. 546-556 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of control of a parabolic system, which describes the heating of a given number of rods, is considered. The density functions of the internal heat sources of the rods are not exactly known, and only the segment of their change is given. Control are point heat sources that are located at the ends of the rods. The goal of the choice of control is to ensure that at a fixed time the modulus of the linear function determined using the average temperatures of the rods does not exceed the given value for any admissible functions of the density of internal heat sources. A technique has been developed for reducing this problem to a one-dimensional control problem under uncertainty. Necessary and sufficient termination conditions are found.
Keywords: control, uncertainty, parabolic system.
@article{VUU_2022_32_4_a3,
     author = {I. V. Izmest'ev and V. I. Ukhobotov},
     title = {On one problem of controlling the heating of a rod system under uncertainty},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {546--556},
     year = {2022},
     volume = {32},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_4_a3/}
}
TY  - JOUR
AU  - I. V. Izmest'ev
AU  - V. I. Ukhobotov
TI  - On one problem of controlling the heating of a rod system under uncertainty
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2022
SP  - 546
EP  - 556
VL  - 32
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2022_32_4_a3/
LA  - ru
ID  - VUU_2022_32_4_a3
ER  - 
%0 Journal Article
%A I. V. Izmest'ev
%A V. I. Ukhobotov
%T On one problem of controlling the heating of a rod system under uncertainty
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2022
%P 546-556
%V 32
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2022_32_4_a3/
%G ru
%F VUU_2022_32_4_a3
I. V. Izmest'ev; V. I. Ukhobotov. On one problem of controlling the heating of a rod system under uncertainty. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 4, pp. 546-556. http://geodesic.mathdoc.fr/item/VUU_2022_32_4_a3/

[1] Osipov Yu.S., “Pozitsionnoe upravlenie v parabolicheskikh sistemakh”, Prikladnaya matematika i mekhanika, 41:2 (1977), 195–201

[2] Korotkii A.I., Osipov Yu.S., “Approksimatsiya v zadachakh pozitsionnogo upravleniya parabolicheskimi sistemami”, Prikladnaya matematika i mekhanika, 42:4 (1978), 599–605

[3] Egorov A.I., Optimalnoe upravlenie teplovymi i diffuzionnymi protsessami, Nauka, M., 1978

[4] Barseghyan V.R., “The problem of control of rod heating process with nonseparated conditions at intermediate moments of time”, Archives of Control Sciences, 31:3 (2021), 481–493 | DOI | MR

[5] Casas E., Kunisch K., “Optimal control of semilinear parabolic equations with non-smooth pointwise-integral control constraints in time-space”, Applied Mathematics and Optimization, 85 (2022), 12 | DOI | MR

[6] Akcha Kh., Maksimov V.I., “Ustoichivoe granichnoe upravlenie parabolicheskim uravneniem”, Trudy Instituta matematiki i mekhaniki UrO RAN, 27, no. 2, 2021, 7–18 | DOI | MR

[7] Lohéac J., “Nonnegative boundary control of 1D linear heat equations”, Vietnam Journal of Mathematics, 49:3 (2021), 845–870 | DOI | MR

[8] Liu J., Zheng G., Ali M.M., “Stability analysis of the anti-stable heat equation with uncertain disturbance on the boundary”, Journal of Mathematical Analysis and Applications, 428:2 (2015), 1193–1201 | DOI | MR

[9] Dai J., Ren B., “UDE-based robust boundary control of heat equation with unknown input disturbance”, IFAC-PapersOnLine, 50:1 (2017), 11403–11408 | DOI

[10] Feng H., Xu C.-Z., Yao P.-F., “Observers and disturbance rejection control for a heat equation”, IEEE Transactions on Automatic Control, 65:11 (2020), 4957–4964 | DOI | MR

[11] Homayounzade M., “Adaptive robust output-feedback boundary control of an unstable parabolic PDE subjected to unknown input disturbance”, International Journal of Systems Science, 52:11 (2021), 2324–2337 | DOI | MR

[12] Krasovskii N.N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985 | MR

[13] Osipov Yu.S., Okhezin S.P., “K teorii differentsialnykh igr v parabolicheskikh sistemakh”, Dokl. AN SSSR, 226:6 (1976), 1267–1270

[14] Okhezin S.P., “Differentsialnaya igra sblizheniya-ukloneniya dlya parabolicheskoi sistemy s integralnymi ogranicheniyami na upravleniya igrokov”, Prikladnaya matematika i mekhanika, 41:2 (1977), 202–209

[15] Vlasenko L.A., Rutkas A.G., Chikrii A.A., “O differentsialnoi igre v abstraktnoi parabolicheskoi sisteme”, Trudy Instituta matematiki i mekhaniki UrO RAN, 21, no. 2, 2015, 26–40

[16] Allahabi F., Mahiub M.A., “A problem of pursuit game with various constraints on controls of players”, International Journal of Partial Differential Equations and Applications, 6:1 (2019), 13–17 http://pubs.sciepub.com/ijpdea/6/1/2

[17] Ukhobotov V.I., Izmest'ev I.V., “The problem of controlling the process of heating the rod in the presence of disturbance and uncertainty”, IFAC-PapersOnLine, 51:32 (2018), 739–742 | DOI

[18] Ukhobotov V.I., Izmestev I.V., “Zadacha upravleniya protsessom nagreva sterzhnya s neizvestnymi temperaturoi na pravom kontse i plotnostyu istochnika tepla”, Trudy Instituta matematiki i mekhaniki UrO RAN, 25, no. 1, 2019, 297–305 | DOI

[19] Pontryagin L.S., “Lineinye differentsialnye igry presledovaniya”, Matematicheskii sbornik (novaya seriya), 112(154):3 (7) (1980), 307–330 | MR

[20] Ukhobotov V.I., Metod odnomernogo proektirovaniya v lineinykh differentsialnykh igrakh s integralnymi ogranicheniyami, Chelyabinskii gosudarstvennyi universitet, Chelyabinsk, 2005

[21] Ukhobotov V.I., “Odnotipnye differentsialnye igry s vypukloi tselyu”, Trudy Instituta matematiki i mekhaniki UrO RAN, 16, no. 5, 2010, 196–204

[22] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972 | MR