Finite-difference method for solving a multidimensional pseudoparabolic equation with boundary conditions of the third kind
    
    
  
  
  
      
      
      
        
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 4, pp. 502-527
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study an initial-boundary value problem for a multidimensional pseudoparabolic equation with variable coefficients and boundary conditions of the third kind. The multidimensional pseudoparabolic equation is reduced to an integro-differential equation with a small parameter. It is shown that as the small parameter tends to zero, the solution of the resulting modified problem converges to the solution of the original problem. For an approximate solution of the obtained problem, a locally one-dimensional difference scheme by A. A. Samarsky is constructed. An a priori estimate is obtained by the method of energy inequalities, from which the uniqueness, stability, and convergence of the solution of the locally one-dimensional difference scheme to the solution of the original differential problem follow. For a two-dimensional problem, an algorithm for the numerical solution of the initial-boundary value problem for a pseudoparabolic equation with conditions of the third kind is developed.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
pseudoparabrolic equation, Hallaire's equation
Keywords: locally one-dimensional scheme, stability, convergence of difference scheme, sum approximation method.
                    
                  
                
                
                Keywords: locally one-dimensional scheme, stability, convergence of difference scheme, sum approximation method.
@article{VUU_2022_32_4_a1,
     author = {M. Kh. Beshtokov},
     title = {Finite-difference method for solving a multidimensional pseudoparabolic equation with boundary conditions of the third kind},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {502--527},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_4_a1/}
}
                      
                      
                    TY - JOUR AU - M. Kh. Beshtokov TI - Finite-difference method for solving a multidimensional pseudoparabolic equation with boundary conditions of the third kind JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2022 SP - 502 EP - 527 VL - 32 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2022_32_4_a1/ LA - ru ID - VUU_2022_32_4_a1 ER -
%0 Journal Article %A M. Kh. Beshtokov %T Finite-difference method for solving a multidimensional pseudoparabolic equation with boundary conditions of the third kind %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2022 %P 502-527 %V 32 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2022_32_4_a1/ %G ru %F VUU_2022_32_4_a1
M. Kh. Beshtokov. Finite-difference method for solving a multidimensional pseudoparabolic equation with boundary conditions of the third kind. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 4, pp. 502-527. http://geodesic.mathdoc.fr/item/VUU_2022_32_4_a1/
