Finite-difference method for solving a multidimensional pseudoparabolic equation with boundary conditions of the third kind
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 4, pp. 502-527 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study an initial-boundary value problem for a multidimensional pseudoparabolic equation with variable coefficients and boundary conditions of the third kind. The multidimensional pseudoparabolic equation is reduced to an integro-differential equation with a small parameter. It is shown that as the small parameter tends to zero, the solution of the resulting modified problem converges to the solution of the original problem. For an approximate solution of the obtained problem, a locally one-dimensional difference scheme by A. A. Samarsky is constructed. An a priori estimate is obtained by the method of energy inequalities, from which the uniqueness, stability, and convergence of the solution of the locally one-dimensional difference scheme to the solution of the original differential problem follow. For a two-dimensional problem, an algorithm for the numerical solution of the initial-boundary value problem for a pseudoparabolic equation with conditions of the third kind is developed.
Mots-clés : pseudoparabrolic equation, Hallaire's equation
Keywords: locally one-dimensional scheme, stability, convergence of difference scheme, sum approximation method.
@article{VUU_2022_32_4_a1,
     author = {M. Kh. Beshtokov},
     title = {Finite-difference method for solving a multidimensional pseudoparabolic equation with boundary conditions of the third kind},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {502--527},
     year = {2022},
     volume = {32},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_4_a1/}
}
TY  - JOUR
AU  - M. Kh. Beshtokov
TI  - Finite-difference method for solving a multidimensional pseudoparabolic equation with boundary conditions of the third kind
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2022
SP  - 502
EP  - 527
VL  - 32
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2022_32_4_a1/
LA  - ru
ID  - VUU_2022_32_4_a1
ER  - 
%0 Journal Article
%A M. Kh. Beshtokov
%T Finite-difference method for solving a multidimensional pseudoparabolic equation with boundary conditions of the third kind
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2022
%P 502-527
%V 32
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2022_32_4_a1/
%G ru
%F VUU_2022_32_4_a1
M. Kh. Beshtokov. Finite-difference method for solving a multidimensional pseudoparabolic equation with boundary conditions of the third kind. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 4, pp. 502-527. http://geodesic.mathdoc.fr/item/VUU_2022_32_4_a1/

[1] Sveshnikov A.A., Alshin A.B., Korpusov M.O., Pletner Yu.D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007

[2] Barenblatt G.I., Zheltov Yu.P., Kochina I.N., “Ob osnovnykh predstavleniyakh teorii filtratsii odnorodnykh zhidkostei v treschinovatykh porodakh”, Prikladnaya matematika i mekhanika, 24:5 (1960), 852–864

[3] Dzektser E.S., “Uravneniya dvizheniya podzemnykh vod so svobodnoi poverkhnostyu v mnogosloinykh sredakh”, Dokl. AN SSSR, 220:3 (1975), 540–543

[4] Rubinshtein L.I., “K voprosu o protsesse rasprostraneniya tepla v geterogennykh sredakh”, Izv. AN SSSR. Ser. geogr. i geofiz., 12:1 (1948), 27–45

[5] Ting T.W., “A cooling process according to two-temperature theory of heat conduction”, Journal of Mathematical Analysis and Applications, 45:1 (1974), 23–31 | DOI | MR

[6] Hallaire M., “Le potentiel efficace de l'eau dans le sol en régime de dessèchement”, L'eau et la production végétale, 9, Institut national de la recherche agronomique, Paris, 1964, 27–62

[7] Chudnovskii A.F., Teplofizika pochv, Nauka, M., 1976

[8] Kanchukoev V.Z., “Kraevye zadachi dlya uravnenii psevdoparabolicheskogo i smeshannogo giperbolo-psevdoparabolicheskogo tipov i ikh prilozheniya k raschetu teplomassobmena v pochvogruntakh”, SAPR i ASPR v melioratsii, Nalchik, 1983, 131–138

[9] Kochina N.N., “Voprosy regulirovaniya urovnya gruntovykh vod pri polivakh”, Dokl. AN SSSR, 213:1 (1973), 51–54

[10] Nakhushev A.M., Borisov V.N., “Kraevye zadachi dlya nagruzhennykh parabolicheskikh uravnenii i ikh prilozheniya k prognozu urovnya gruntovykh vod”, Differentsialnye uravneniya, 13:1 (1977), 105–110

[11] Colton D., “Pseudoparabolic equations in one space variable”, Journal of Differential Equations, 12:3 (1972), 559–565 | DOI | MR

[12] Coleman B.D., Duffin R.J., Mizel V.J., “Instability, uniqueness, and nonexistence theorems for the equation $u_{t}=u_{xx}-u_{xtx}$ on a strip”, Archive for Rational Mechanics and Analysis, 19:2 (1965), 100–116 | DOI | MR

[13] Shkhanukov M.X., “O nekotorykh kraevykh zadachakh dlya uravneniya tretego poryadka, voznikayuschikh pri modelirovanii filtratsii zhidkosti v poristykh sredakh”, Differentsialnye uravneniya, 18:4 (1982), 689–699 | MR

[14] Showalter R.E., Ting T.W., “Pseudoparabolic partial differential equations”, SIAM Journal on Mathematical Analysis, 1:1 (1970), 1–26 | DOI | MR

[15] Ting T.W., “Certain non-steady flows of second-order fluids”, Archive for Rational Mechanics and Analysis, 14:1 (1963), 1–26 | DOI | MR

[16] Beshtokov M.Kh., “Metod Rimana dlya resheniya nelokalnykh kraevykh zadach dlya psevdoparabolicheskikh uravnenii tretego poryadka”, Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya «Fiziko-matematicheskie nauki», 2013, no. 4 (33), 15–24 | DOI

[17] Beshtokov M.Kh., “Raznostnyi metod resheniya odnoi nelokalnoi kraevoi zadachi dlya psevdoparabolicheskogo uravneniya tretego poryadka”, Differentsialnye uravneniya, 49:9 (2013), 1170–1177

[18] Jachimavičienė J., Sapagovas M., Štikonas A., Štikonienė O., “On the stability of explicit finite difference schemes for a pseudoparabolic equation with nonlocal conditions”, Nonlinear Analysis: Modelling and Control, 19:2 (2014), 225–240 | DOI | MR

[19] Amiraliyev G.M., Cimen E., Amirali I., Cakir M., “High-order finite difference technique for delay pseudo-parabolic equations”, Journal of Computational and Applied Mathematics, 321 (2017), 1–7 | DOI | MR

[20] Beshtokov M.Kh., “O chislennom reshenii nelokalnoi kraevoi zadachi dlya vyrozhdayuschegosya psevdoparabolicheskogo uravneniya”, Differentsialnye uravneniya, 52:10 (2016), 1393–1406 | DOI

[21] Beshtokov M.Kh., “The third boundary value problem for loaded differential Sobolev type equation and grid methods of their numerical implementation”, IOP Conference Series: Materials Science and Engineering, 158 (2016), 012019 | DOI

[22] Beshtokov M.Kh., “Kraevye zadachi dlya vyrozhdayuschikhsya i nevyrozhdayuschikhsya uravnenii sobolevskogo tipa s nelokalnym istochnikom v differentsialnoi i raznostnoi traktovkakh”, Differentsialnye uravneniya, 54:2 (2018), 249–266 | DOI

[23] Beshtokov M.Kh., “Chislennoe issledovanie nachalno-kraevykh zadach dlya uravneniya sobolevckogo tipa s drobnoi po vremeni proizvodnoi”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 59:2 (2019), 185–202 | DOI

[24] Beshtokov M.Kh., “Kraevye zadachi dlya nagruzhennogo modifitsirovannogo uravneniya vlagoperenosa drobnogo poryadka s operatorom Besselya i raznostnye metody ikh resheniya”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 30:2 (2020), 158–175 | DOI

[25] Mesloub S., Bachar I., “On a nonlocal 1-D initial value problem for a singular fractional-order parabolic equation with Bessel operator”, Advances in Difference Equations, 2019 (2019), 254 | DOI | MR

[26] Luc N.H., Jafari H., Kumam P., Tuan N.H., “On an initial value problem for time fractional pseudo-parabolic equation with Caputo derivative”, Mathematical Methods in the Applied Sciences, 2021 | DOI | MR

[27] Čiegis R., Tumanova N., “On construction and analysis of finite difference schemes for pseudoparabolic problems with nonlocal boundary conditions”, Mathematical Modelling and Analysis, 19:2 (2014), 281–297 | DOI | MR

[28] Čiegis R., Suboč O., Bugajev A., “Parallel algorithms for three-dimensional parabolic and pseudoparabolic problems with different boundary conditions”, Nonlinear Analysis: Modelling and Control, 19:3 (2014), 382–395 | DOI | MR

[29] Hussain M., Haq S., Ghafoor A., “Meshless RBFs method for numerical solutions of two-dimensional high order fractional Sobolev equations”, Computers and Mathematics with Applications, 79:3 (2020), 802–816 | DOI | MR

[30] Aslefallah M., Abbasbandy S., Shivanian E., “Meshless singular boundary method for two-dimensional pseudo-parabolic equation: analysis of stability and convergence”, Journal of Applied Mathematics and Computing, 63 (2020), 585–606 | DOI | MR

[31] Ablabekov B.S., Baiserkeeva A.B., “Yavnoe reshenie zadachi Koshi dlya dvumernogo psevdoparabolicheskogo uravneniya”, Izvestiya vysshikh uchebnykh zavedenii Kyrgyzstana, 2015, no. 10, 3–7

[32] Ablabekov B.S., Mukanbetova A.T., “O razreshimosti reshenii vtoroi nachalno-kraevoi zadachi dlya psevdoparabolicheskogo uravneniya s malym parametrom”, Nauka, novye tekhnologii i innovatsii Kyrgyzstana, 2019, no. 3, 41–47

[33] Beshtokov M.Kh., “Chislennyi metod resheniya vtoroi nachalno-kraevoi zadachi dlya mnogomernogo psevdoparabolicheskogo uravneniya tretego poryadka”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 31:3 (2021), 384–408 | DOI | MR

[34] Ilin A.M., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri starshei proizvodnoi”, Matematicheskie zametki, 6:2 (1969), 237–248

[35] Ignatev V.N., Zadorin A.I., O plokhoi obuslovlennosti pri chislennom reshenii uravnenii s malym parametrom, Preprint VTs SO AN SSSR No 84, Novosibirsk, 1981, 29 pp.

[36] Lukaschuk S.Yu., “Priblizhenie obyknovennykh drobno-differentsialnykh uravnenii differentsialnymi uravneniyami s malym parametrom”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 27:4 (2017), 515–531 | DOI

[37] Vishik M.I., Lyusternik L.A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi matematicheskikh nauk, 12:5 (77) (1957), 3–122

[38] Godunov S.K., Ryabenkii V.S., Raznostnye skhemy, Nauka, M., 1977 | MR

[39] Ladyzhenskaya O.A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[40] Ladyzhenskaya O.A., Seregin G.A., “Ob odnom sposobe priblizhennogo resheniya nachalno-kraevykh zadach dlya uravnenii Nave-Stoksa”, Zapiski nauchnykh seminarov LOMI, 197, 1992, 87–119 | MR

[41] Temam R., Navier-Stokes equations. Theory and numerical analysis, North-Holland, Amsterdam, 1977 | MR

[42] Samarskii A.A., Teoriya raznostnykh skhem, Nauka, M., 1983

[43] Ladyzhenskaya O.A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[44] Samarskii A.A., Gulin A.V., Ustoichivost raznostnykh skhem, Nauka, M., 1973 | MR