Finite-difference method for solving a multidimensional pseudoparabolic equation with boundary conditions of the third kind
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 4, pp. 502-527

Voir la notice de l'article provenant de la source Math-Net.Ru

We study an initial-boundary value problem for a multidimensional pseudoparabolic equation with variable coefficients and boundary conditions of the third kind. The multidimensional pseudoparabolic equation is reduced to an integro-differential equation with a small parameter. It is shown that as the small parameter tends to zero, the solution of the resulting modified problem converges to the solution of the original problem. For an approximate solution of the obtained problem, a locally one-dimensional difference scheme by A. A. Samarsky is constructed. An a priori estimate is obtained by the method of energy inequalities, from which the uniqueness, stability, and convergence of the solution of the locally one-dimensional difference scheme to the solution of the original differential problem follow. For a two-dimensional problem, an algorithm for the numerical solution of the initial-boundary value problem for a pseudoparabolic equation with conditions of the third kind is developed.
Mots-clés : pseudoparabrolic equation, Hallaire's equation
Keywords: locally one-dimensional scheme, stability, convergence of difference scheme, sum approximation method.
@article{VUU_2022_32_4_a1,
     author = {M. Kh. Beshtokov},
     title = {Finite-difference method for solving a multidimensional pseudoparabolic equation with boundary conditions of the third kind},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {502--527},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_4_a1/}
}
TY  - JOUR
AU  - M. Kh. Beshtokov
TI  - Finite-difference method for solving a multidimensional pseudoparabolic equation with boundary conditions of the third kind
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2022
SP  - 502
EP  - 527
VL  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VUU_2022_32_4_a1/
LA  - ru
ID  - VUU_2022_32_4_a1
ER  - 
%0 Journal Article
%A M. Kh. Beshtokov
%T Finite-difference method for solving a multidimensional pseudoparabolic equation with boundary conditions of the third kind
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2022
%P 502-527
%V 32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2022_32_4_a1/
%G ru
%F VUU_2022_32_4_a1
M. Kh. Beshtokov. Finite-difference method for solving a multidimensional pseudoparabolic equation with boundary conditions of the third kind. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 4, pp. 502-527. http://geodesic.mathdoc.fr/item/VUU_2022_32_4_a1/