A mean field type differential inclusion with upper semicontinuous right-hand side
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 4, pp. 489-501 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Mean field type differential inclusions appear within the theory of mean field type control through the convexification of a right-hand side. We study the case when the right-hand side of a differential inclusion depends on the state of an agent and the distribution of agents in an upper semicontinuous way. The main result of the paper is the existence and the stability of the solution of a mean field type differential inclusion. Furthermore, we show that the value function of the mean field type optimal control problem depends on an initial state and a parameter semicontinuously.
Keywords: mean field type differential inclusions, mean field type optimal control, stability analysis.
@article{VUU_2022_32_4_a0,
     author = {Y. V. Averboukh},
     title = {A mean field type differential inclusion with upper semicontinuous right-hand side},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {489--501},
     year = {2022},
     volume = {32},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_4_a0/}
}
TY  - JOUR
AU  - Y. V. Averboukh
TI  - A mean field type differential inclusion with upper semicontinuous right-hand side
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2022
SP  - 489
EP  - 501
VL  - 32
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2022_32_4_a0/
LA  - en
ID  - VUU_2022_32_4_a0
ER  - 
%0 Journal Article
%A Y. V. Averboukh
%T A mean field type differential inclusion with upper semicontinuous right-hand side
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2022
%P 489-501
%V 32
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2022_32_4_a0/
%G en
%F VUU_2022_32_4_a0
Y. V. Averboukh. A mean field type differential inclusion with upper semicontinuous right-hand side. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 4, pp. 489-501. http://geodesic.mathdoc.fr/item/VUU_2022_32_4_a0/

[1] Aliprantis C.D., Border K.C., Infinite dimensional analysis. A hitchhiker's guide, Springer, Berlin, 2006 | DOI | MR

[2] Ambrosio L., Gigli N., Savaré G., Gradient flows. In metric spaces and in the space of probability measures, Birkhäuser, Basel, 2008 | DOI | MR

[3] Aubin J.-P., Viability theory, Birkhäuser, Boston, 2009 | MR

[4] Bonnet B., Frankowska H., “Differential inclusions in Wasserstein spaces: the Cauchy-Lipschitz framework”, Journal of Differential Equations, 271 (2021), 594–637 | DOI | MR

[5] Cavagnari G., Lisini S., Orrieri C., Savaré G., “Lagrangian, Eulerian and Kantorovich formulations of multi-agent optimal control problems: equivalence and gamma-convergence”, Journal of Differential Equations, 322 (2022), 268–364 | DOI | MR

[6] Cavagnari G., Marigonda A., Piccoli B., “Superposition principle for differential inclusions”, Large-scale scientific computing, 11th International conference LSSC 2017, Revised selected papers (Sozopol, Bulgaria, June 5-9, 2017), Springer, Cham, 2018, 201–209 | DOI | MR

[7] Jimenez C., Marigonda A., Quincampoix M., “Optimal control of multiagent systems in the Wasserstein space”, Calculus of Variations and Partial Differential Equations, 59:2 (2020), 58 | DOI | MR

[8] Piccoli B., “Measure differential inclusions”, 2018 IEEE Conference on Decision and Control (CDC), IEEE, 2018, 1323–1328 | DOI

[9] Piccoli B., Rossi F., “Measure dynamics with probability vector fields and sources”, Discrete and Continuous Dynamical Systems. Ser. A, 39:11 (2019), 6207–6230 | DOI | MR

[10] Subbotin A.I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka. Perspektivy dinamicheskoi optimizatsii, Institut kompyuternykh issledovanii, M.–Izhevsk, 2003

[11] Tolstonogov A.A., Differentsialnye vklyucheniya v banakhovom prostranstve, Nauka, Novosibirsk, 1986 | MR