Local antimagic chromatic number for the corona product of wheel and null graphs
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 3, pp. 463-485 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $G=(V,E)$ be a graph of order $p$ and size $q$ having no isolated vertices. A bijection $f\colon E{\rightarrow}\left\{1,2,3,\ldots,q \right\}$ is called a local antimagic labeling if for all $uv\in E$, we have $w(u)\neq w(v)$, the weight $w(u)=\sum_{e\in E(u)}f(e)$, where $E(u)$ is the set of edges incident to $u$. A graph $G$ is local antimagic, if $G$ has a local antimagic labeling. The local antimagic chromatic number $\chi_{la}(G)$ is defined to be the minimum number of colors taken over all colorings of $G$ induced by local antimagic labelings of $G$. In this paper, we completely determine the local antimagic chromatic number for the corona product of wheel and null graphs.
Keywords: local antimagic labeling, local antimagic chromatic number, corona product, wheel graph.
@article{VUU_2022_32_3_a7,
     author = {R. Shankar and M. Ch. Nalliah},
     title = {Local antimagic chromatic number for the corona product of wheel and null graphs},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {463--485},
     year = {2022},
     volume = {32},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a7/}
}
TY  - JOUR
AU  - R. Shankar
AU  - M. Ch. Nalliah
TI  - Local antimagic chromatic number for the corona product of wheel and null graphs
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2022
SP  - 463
EP  - 485
VL  - 32
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a7/
LA  - en
ID  - VUU_2022_32_3_a7
ER  - 
%0 Journal Article
%A R. Shankar
%A M. Ch. Nalliah
%T Local antimagic chromatic number for the corona product of wheel and null graphs
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2022
%P 463-485
%V 32
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a7/
%G en
%F VUU_2022_32_3_a7
R. Shankar; M. Ch. Nalliah. Local antimagic chromatic number for the corona product of wheel and null graphs. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 3, pp. 463-485. http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a7/

[1] Arumugam S., Premalatha K., Bacǎ M., Semaničová–Fecňovčíková A., “Local antimagic vertex coloring of a graph”, Graphs and Combinatorics, 33:2 (2017), 275–285 | DOI | MR | Zbl

[2] Premalatha K., Arumugam S., Lee Y.-Ch., Wang T.-M., “Local antimagic chromatic number of trees — I”, Journal of Discrete Mathematical Sciences and Cryptography, 2020 | DOI | Zbl

[3] Bensmail J., Senhaji M., Lyngsie K. S., “On a combination of the 1-2-3-onjecture and the antimagic labeling conjecture”, Discrete Mathematics and Theoretical Computer Science, 19:1 (2017), 21 | DOI | MR | Zbl

[4] Chartrand G., Lesniak L., Zhang P., Graphs and digraphs, Chapman and Hall/CRC, New York, 2015 | DOI | MR

[5] Eccles T., “Graphs of large linear size are antimagic”, Journal of graph theory, 81:3 (2016), 236–261 | DOI | MR | Zbl

[6] Gallian J. A., “Graph labeling”, The Electronic Journal of Combinatorics, 2021, Dynamic Surveys, DS6 | DOI | MR

[7] Hartsfield N., Ringel G., Pearls in graph theory: a comprehensive introduction, Academic Press, Boston, 1990 https://archive.org/details/pearlsingraphthe00har_f6p/page/n5/mode/2up | Zbl

[8] Haslegrave J., “Proof of a local antimagic conjecture”, Discrete Mathematics and Theoretical Computer Science, 20:1 (2018), 18 | DOI | MR | Zbl

[9] Lau G.-Ch., Ng H.-K., Shiu W.-Ch., “Affirmative solutions on local antimagic chromatic number”, Graphs and Combinatorics, 36:5 (2020), 1337–1354 | DOI | MR | Zbl

[10] Lau G.-Ch., Ng H.-K., Shiu W.-Ch., “On local antimagic chromatic number of cycle-related join graphs”, Discussiones Mathematicae Graph Theory, 41:1 (2021), 133–152 | DOI | MR | Zbl

[11] Lau G.-Ch., Shiu W.-Ch., Ng H.-K., “On local antimagic chromatic number of graphs with cut-vertices”, Iranian Journal of Mathematical Sciences and Informatics, 2022 (to appear) | DOI

[12] Liang Y.-Ch., Wong Ts.-L., Zhu X., “Anti-magic labeling of trees”, Discrete Mathematics, 331 (2014), 9–14 | DOI | MR | Zbl

[13] Nalliah M., Shankar R., Wang T.-M., “Local antimagic vertex coloring for generalized friendship graphs”, Journal of Discrete Mathematical Sciences and Cryptography, 2022 | DOI

[14] Shaebani S., “On local antimagic chromatic number of graphs”, Journal of Algebraic Systems, 7:2 (2020), 245–256 | DOI | MR | Zbl

[15] Shankar R., Nalliah M., “Local vertex antimagic chromatic number of some wheel related graphs”, Proyecciones, 41:1 (2022), 319–334 | DOI | MR | Zbl