@article{VUU_2022_32_3_a7,
author = {R. Shankar and M. Ch. Nalliah},
title = {Local antimagic chromatic number for the corona product of wheel and null graphs},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {463--485},
year = {2022},
volume = {32},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a7/}
}
TY - JOUR AU - R. Shankar AU - M. Ch. Nalliah TI - Local antimagic chromatic number for the corona product of wheel and null graphs JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2022 SP - 463 EP - 485 VL - 32 IS - 3 UR - http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a7/ LA - en ID - VUU_2022_32_3_a7 ER -
%0 Journal Article %A R. Shankar %A M. Ch. Nalliah %T Local antimagic chromatic number for the corona product of wheel and null graphs %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2022 %P 463-485 %V 32 %N 3 %U http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a7/ %G en %F VUU_2022_32_3_a7
R. Shankar; M. Ch. Nalliah. Local antimagic chromatic number for the corona product of wheel and null graphs. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 3, pp. 463-485. http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a7/
[1] Arumugam S., Premalatha K., Bacǎ M., Semaničová–Fecňovčíková A., “Local antimagic vertex coloring of a graph”, Graphs and Combinatorics, 33:2 (2017), 275–285 | DOI | MR | Zbl
[2] Premalatha K., Arumugam S., Lee Y.-Ch., Wang T.-M., “Local antimagic chromatic number of trees — I”, Journal of Discrete Mathematical Sciences and Cryptography, 2020 | DOI | Zbl
[3] Bensmail J., Senhaji M., Lyngsie K. S., “On a combination of the 1-2-3-onjecture and the antimagic labeling conjecture”, Discrete Mathematics and Theoretical Computer Science, 19:1 (2017), 21 | DOI | MR | Zbl
[4] Chartrand G., Lesniak L., Zhang P., Graphs and digraphs, Chapman and Hall/CRC, New York, 2015 | DOI | MR
[5] Eccles T., “Graphs of large linear size are antimagic”, Journal of graph theory, 81:3 (2016), 236–261 | DOI | MR | Zbl
[6] Gallian J. A., “Graph labeling”, The Electronic Journal of Combinatorics, 2021, Dynamic Surveys, DS6 | DOI | MR
[7] Hartsfield N., Ringel G., Pearls in graph theory: a comprehensive introduction, Academic Press, Boston, 1990 https://archive.org/details/pearlsingraphthe00har_f6p/page/n5/mode/2up | Zbl
[8] Haslegrave J., “Proof of a local antimagic conjecture”, Discrete Mathematics and Theoretical Computer Science, 20:1 (2018), 18 | DOI | MR | Zbl
[9] Lau G.-Ch., Ng H.-K., Shiu W.-Ch., “Affirmative solutions on local antimagic chromatic number”, Graphs and Combinatorics, 36:5 (2020), 1337–1354 | DOI | MR | Zbl
[10] Lau G.-Ch., Ng H.-K., Shiu W.-Ch., “On local antimagic chromatic number of cycle-related join graphs”, Discussiones Mathematicae Graph Theory, 41:1 (2021), 133–152 | DOI | MR | Zbl
[11] Lau G.-Ch., Shiu W.-Ch., Ng H.-K., “On local antimagic chromatic number of graphs with cut-vertices”, Iranian Journal of Mathematical Sciences and Informatics, 2022 (to appear) | DOI
[12] Liang Y.-Ch., Wong Ts.-L., Zhu X., “Anti-magic labeling of trees”, Discrete Mathematics, 331 (2014), 9–14 | DOI | MR | Zbl
[13] Nalliah M., Shankar R., Wang T.-M., “Local antimagic vertex coloring for generalized friendship graphs”, Journal of Discrete Mathematical Sciences and Cryptography, 2022 | DOI
[14] Shaebani S., “On local antimagic chromatic number of graphs”, Journal of Algebraic Systems, 7:2 (2020), 245–256 | DOI | MR | Zbl
[15] Shankar R., Nalliah M., “Local vertex antimagic chromatic number of some wheel related graphs”, Proyecciones, 41:1 (2022), 319–334 | DOI | MR | Zbl