Local antimagic chromatic number for the corona product of wheel and null graphs
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 3, pp. 463-485

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G=(V,E)$ be a graph of order $p$ and size $q$ having no isolated vertices. A bijection $f\colon E{\rightarrow}\left\{1,2,3,\ldots,q \right\}$ is called a local antimagic labeling if for all $uv\in E$, we have $w(u)\neq w(v)$, the weight $w(u)=\sum_{e\in E(u)}f(e)$, where $E(u)$ is the set of edges incident to $u$. A graph $G$ is local antimagic, if $G$ has a local antimagic labeling. The local antimagic chromatic number $\chi_{la}(G)$ is defined to be the minimum number of colors taken over all colorings of $G$ induced by local antimagic labelings of $G$. In this paper, we completely determine the local antimagic chromatic number for the corona product of wheel and null graphs.
Keywords: local antimagic labeling, local antimagic chromatic number, corona product, wheel graph.
@article{VUU_2022_32_3_a7,
     author = {R. Shankar and M. Ch. Nalliah},
     title = {Local antimagic chromatic number for the corona product of wheel and null graphs},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {463--485},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a7/}
}
TY  - JOUR
AU  - R. Shankar
AU  - M. Ch. Nalliah
TI  - Local antimagic chromatic number for the corona product of wheel and null graphs
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2022
SP  - 463
EP  - 485
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a7/
LA  - en
ID  - VUU_2022_32_3_a7
ER  - 
%0 Journal Article
%A R. Shankar
%A M. Ch. Nalliah
%T Local antimagic chromatic number for the corona product of wheel and null graphs
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2022
%P 463-485
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a7/
%G en
%F VUU_2022_32_3_a7
R. Shankar; M. Ch. Nalliah. Local antimagic chromatic number for the corona product of wheel and null graphs. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 3, pp. 463-485. http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a7/