Local antimagic chromatic number for the corona product of wheel and null graphs
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 3, pp. 463-485
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G=(V,E)$ be a graph of order $p$ and size $q$ having no isolated vertices. A bijection $f\colon E{\rightarrow}\left\{1,2,3,\ldots,q \right\}$ is called a local antimagic labeling if for all $uv\in E$, we have $w(u)\neq w(v)$, the weight $w(u)=\sum_{e\in E(u)}f(e)$, where $E(u)$ is the set of edges incident to $u$. A graph $G$ is local antimagic, if $G$ has a local antimagic labeling. The local antimagic chromatic number $\chi_{la}(G)$ is defined to be the minimum number of colors taken over all colorings of $G$ induced by local antimagic labelings of $G$. In this paper, we completely determine the local antimagic chromatic number for the corona product of wheel and null graphs.
Keywords:
local antimagic labeling, local antimagic chromatic number, corona product, wheel graph.
@article{VUU_2022_32_3_a7,
author = {R. Shankar and M. Ch. Nalliah},
title = {Local antimagic chromatic number for the corona product of wheel and null graphs},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {463--485},
publisher = {mathdoc},
volume = {32},
number = {3},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a7/}
}
TY - JOUR AU - R. Shankar AU - M. Ch. Nalliah TI - Local antimagic chromatic number for the corona product of wheel and null graphs JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2022 SP - 463 EP - 485 VL - 32 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a7/ LA - en ID - VUU_2022_32_3_a7 ER -
%0 Journal Article %A R. Shankar %A M. Ch. Nalliah %T Local antimagic chromatic number for the corona product of wheel and null graphs %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2022 %P 463-485 %V 32 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a7/ %G en %F VUU_2022_32_3_a7
R. Shankar; M. Ch. Nalliah. Local antimagic chromatic number for the corona product of wheel and null graphs. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 3, pp. 463-485. http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a7/