@article{VUU_2022_32_3_a6,
author = {V. N. Ushakov and A. A. Ershov},
title = {On the parametric dependence of the volume of integral funnels and their approximations},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {447--462},
year = {2022},
volume = {32},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a6/}
}
TY - JOUR AU - V. N. Ushakov AU - A. A. Ershov TI - On the parametric dependence of the volume of integral funnels and their approximations JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2022 SP - 447 EP - 462 VL - 32 IS - 3 UR - http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a6/ LA - ru ID - VUU_2022_32_3_a6 ER -
%0 Journal Article %A V. N. Ushakov %A A. A. Ershov %T On the parametric dependence of the volume of integral funnels and their approximations %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2022 %P 447-462 %V 32 %N 3 %U http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a6/ %G ru %F VUU_2022_32_3_a6
V. N. Ushakov; A. A. Ershov. On the parametric dependence of the volume of integral funnels and their approximations. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 3, pp. 447-462. http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a6/
[1] Kurzhanskii A. B., Control and observation under uncertainty conditions, Nauka, M., 1977
[2] Kurzhanskii A. B., Selected works, Moscow State University, M., 2009
[3] Krasovskii N. N., Control of a dynamical system: problem on the minimum of guaranteed result, Nauka, M., 1985 | MR
[4] Krasovskii N. N., Subbotin A. I., Game-theoretical control problems, Springer, New York, 1988 https://link.springer.com/book/9781461283188 | MR | Zbl
[5] Chernous'ko F. L., Melikyan A. A., Game control and search problems, Nauka, M., 1978 | MR
[6] Anan'evskii I. M., “Control of a nonlinear vibratory system of the fourth order with unknown parameters”, Automation and Remote Control, 62:3 (2001), 343–355 | DOI | MR
[7] Anan'evskii I. M., “Control synthesis for linear systems by methods of stability theory of motion”, Differential Equations, 39:1 (2003), 1–10 | DOI | MR
[8] Ershov A. A., Ushakov A. V., Ushakov V. N., “Two game-theoretic problems of approach”, Sbornik: Mathematics, 212:9 (2021), 1228–1260 | DOI | DOI | MR | Zbl
[9] Polyak B. T., Khlebnikov M. V., Shcherbakov P. S., Control of linear systems under external disturbances: Technique of linear matrix inequalities, Lenand, M., 2014
[10] Beznos A. V., Grishin A. A., Lensky A. V., Okhotsimsky D. E., Formal'sky A. M., “A flywheel use-based control for a pendulum with a fixed suspension point”, Journal of Computer and System Sciences International, 43:1 (2004), 22–33 | Zbl
[11] Lee E. B., Markus L., Foundation of optimal control theory, John Wiley and Sons, New York–London–Sydney, 1967 | MR
[12] Kurzhanski A. B., Valyi I., Ellipsoidal calculus for estimation and control, Birkhäuser, Boston, 1997 | MR | Zbl
[13] Chernous'ko F. L., Estimation of the phase state of dynamical systems. The ellipsoid method, Nauka, M., 1988 | MR
[14] Lempio F., Veliov V. M., “Discrete approximations of differential inclusions”, Bayreuther Mathematische Schriften, 54 (1998), 149–232 | MR | Zbl
[15] Nikol'skii M. S., “Approximation of the feasibility set for a differential inclusion”, Vestnik Moskovskogo Universiteta. Ser. XV. Vychislitel'naya Matematika i Kibernetika, 1987, no. 4, 31–34 (in Russian) | Zbl
[16] Nikol'skii M. S., “An inner estimate of the attainability set of Brockett's nonlinear integrator”, Differential Equations, 36:11 (2000), 1647–1651 | DOI | MR | Zbl
[17] Vdovin S. A., Taras'yev A. M., Ushakov V. N., “Construction of the attainability set of a Brockett integrator”, Journal of Applied Mathematics and Mechanics, 68:5 (2004), 631–646 | DOI | MR | MR | Zbl
[18] Gusev M. I., “Estimates of reachable sets of multidimensional control systems with nonlinear interconnections”, Proceedings of the Steklov Institute of Mathematics, 269, suppl. 1 (2010), 134–146 | DOI | MR | Zbl
[19] Filippova T. F., “Construction of set-valued estimates of reachable sets for some nonlinear dynamical systems with impulsive control”, Proc. Steklov Inst. Math., 269, suppl. 1 (2010), 95–102 | DOI | MR | Zbl
[20] Ushakov V. N., Matviychuk A. R., Ushakov A. V., “Approximations of attainability sets and of integral funnels of differential inclusions”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2011, no. 4, 23–39 (in Russian) | DOI | Zbl
[21] Ushakov V. N., Ershov A. A., “Reachable sets and integral funnels of differential inclusions depending on a parameter”, Doklady Mathematics, 104:1 (2021), 200–204 | DOI | DOI | MR | Zbl
[22] Ushakov V. N., Ershov A. A., Ushakov A. V., Kuvshinov O. A., “Control system depending on a parameter”, Ural Mathematical Journal, 7:1 (2021), 120–159 | DOI | MR | Zbl
[23] Ushakov V. N., Ershov A. A., Ushakov A. V., “Control system depending on a parameter: reachable sets and integral funnels”, Prikladnaya Matematika i Mekhanika, 86:2 (2022), 186–205 (in Russian) | DOI
[24] Leichtweiß K., Konvexe Mengen, Springer, Berlin, 1980 | MR | MR | Zbl