On the parametric dependence of the volume of integral funnels and their approximations
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 3, pp. 447-462
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a nonlinear control system in a finite-dimensional Euclidean space and on a finite time interval, which depends on a parameter. Reachable sets and integral funnels of a differential inclusion corresponding to a control system containing a parameter are studied. When studying numerous problems of control theory and differential games, constructing their solutions and estimating errors, various theoretical approaches and associated computational methods are used. The problems mentioned above include, for example, various types of approach problems, the resolving constructions of which can be described quite simply in terms of reachable sets and integral funnels. In this paper, we study the dependence of reachable sets and integral funnels on a parameter: the degree of this dependence on a parameter is estimated under certain conditions on the control system. The degree of dependence of the integral funnels is investigated for the change in their volume with a change in the parameter. To estimate this dependence, systems of sets in the phase space are introduced that approximate the reachable sets and integral funnels on a given time interval corresponding to a finite partition of this interval. In this case, the degree of dependence of the approximating system of sets on the parameter is first estimated, and then this estimate is used in estimating the dependence of the volume of the integral funnel of the differential inclusion on the parameter. This approach is natural and especially useful in the study of specific applied control problems, in solving which, in the end, one has to deal not with ideal reachable sets and integral funnels, but with their approximations corresponding to a discrete representation of the time interval.
Keywords: control nonlinear systems, differential inclusions, reachable sets, parametric depedence, volume of integral funnel, discrete approximation.
@article{VUU_2022_32_3_a6,
     author = {V. N. Ushakov and A. A. Ershov},
     title = {On the parametric dependence of the volume of integral funnels and their approximations},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {447--462},
     year = {2022},
     volume = {32},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a6/}
}
TY  - JOUR
AU  - V. N. Ushakov
AU  - A. A. Ershov
TI  - On the parametric dependence of the volume of integral funnels and their approximations
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2022
SP  - 447
EP  - 462
VL  - 32
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a6/
LA  - ru
ID  - VUU_2022_32_3_a6
ER  - 
%0 Journal Article
%A V. N. Ushakov
%A A. A. Ershov
%T On the parametric dependence of the volume of integral funnels and their approximations
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2022
%P 447-462
%V 32
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a6/
%G ru
%F VUU_2022_32_3_a6
V. N. Ushakov; A. A. Ershov. On the parametric dependence of the volume of integral funnels and their approximations. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 3, pp. 447-462. http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a6/

[1] Kurzhanskii A. B., Control and observation under uncertainty conditions, Nauka, M., 1977

[2] Kurzhanskii A. B., Selected works, Moscow State University, M., 2009

[3] Krasovskii N. N., Control of a dynamical system: problem on the minimum of guaranteed result, Nauka, M., 1985 | MR

[4] Krasovskii N. N., Subbotin A. I., Game-theoretical control problems, Springer, New York, 1988 https://link.springer.com/book/9781461283188 | MR | Zbl

[5] Chernous'ko F. L., Melikyan A. A., Game control and search problems, Nauka, M., 1978 | MR

[6] Anan'evskii I. M., “Control of a nonlinear vibratory system of the fourth order with unknown parameters”, Automation and Remote Control, 62:3 (2001), 343–355 | DOI | MR

[7] Anan'evskii I. M., “Control synthesis for linear systems by methods of stability theory of motion”, Differential Equations, 39:1 (2003), 1–10 | DOI | MR

[8] Ershov A. A., Ushakov A. V., Ushakov V. N., “Two game-theoretic problems of approach”, Sbornik: Mathematics, 212:9 (2021), 1228–1260 | DOI | DOI | MR | Zbl

[9] Polyak B. T., Khlebnikov M. V., Shcherbakov P. S., Control of linear systems under external disturbances: Technique of linear matrix inequalities, Lenand, M., 2014

[10] Beznos A. V., Grishin A. A., Lensky A. V., Okhotsimsky D. E., Formal'sky A. M., “A flywheel use-based control for a pendulum with a fixed suspension point”, Journal of Computer and System Sciences International, 43:1 (2004), 22–33 | Zbl

[11] Lee E. B., Markus L., Foundation of optimal control theory, John Wiley and Sons, New York–London–Sydney, 1967 | MR

[12] Kurzhanski A. B., Valyi I., Ellipsoidal calculus for estimation and control, Birkhäuser, Boston, 1997 | MR | Zbl

[13] Chernous'ko F. L., Estimation of the phase state of dynamical systems. The ellipsoid method, Nauka, M., 1988 | MR

[14] Lempio F., Veliov V. M., “Discrete approximations of differential inclusions”, Bayreuther Mathematische Schriften, 54 (1998), 149–232 | MR | Zbl

[15] Nikol'skii M. S., “Approximation of the feasibility set for a differential inclusion”, Vestnik Moskovskogo Universiteta. Ser. XV. Vychislitel'naya Matematika i Kibernetika, 1987, no. 4, 31–34 (in Russian) | Zbl

[16] Nikol'skii M. S., “An inner estimate of the attainability set of Brockett's nonlinear integrator”, Differential Equations, 36:11 (2000), 1647–1651 | DOI | MR | Zbl

[17] Vdovin S. A., Taras'yev A. M., Ushakov V. N., “Construction of the attainability set of a Brockett integrator”, Journal of Applied Mathematics and Mechanics, 68:5 (2004), 631–646 | DOI | MR | MR | Zbl

[18] Gusev M. I., “Estimates of reachable sets of multidimensional control systems with nonlinear interconnections”, Proceedings of the Steklov Institute of Mathematics, 269, suppl. 1 (2010), 134–146 | DOI | MR | Zbl

[19] Filippova T. F., “Construction of set-valued estimates of reachable sets for some nonlinear dynamical systems with impulsive control”, Proc. Steklov Inst. Math., 269, suppl. 1 (2010), 95–102 | DOI | MR | Zbl

[20] Ushakov V. N., Matviychuk A. R., Ushakov A. V., “Approximations of attainability sets and of integral funnels of differential inclusions”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2011, no. 4, 23–39 (in Russian) | DOI | Zbl

[21] Ushakov V. N., Ershov A. A., “Reachable sets and integral funnels of differential inclusions depending on a parameter”, Doklady Mathematics, 104:1 (2021), 200–204 | DOI | DOI | MR | Zbl

[22] Ushakov V. N., Ershov A. A., Ushakov A. V., Kuvshinov O. A., “Control system depending on a parameter”, Ural Mathematical Journal, 7:1 (2021), 120–159 | DOI | MR | Zbl

[23] Ushakov V. N., Ershov A. A., Ushakov A. V., “Control system depending on a parameter: reachable sets and integral funnels”, Prikladnaya Matematika i Mekhanika, 86:2 (2022), 186–205 (in Russian) | DOI

[24] Leichtweiß K., Konvexe Mengen, Springer, Berlin, 1980 | MR | MR | Zbl