@article{VUU_2022_32_3_a4,
author = {G. Petrosyan},
title = {On a boundary value problem for a class of fractional {Langevin} type differential equations in a {Banach} space},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {415--432},
year = {2022},
volume = {32},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a4/}
}
TY - JOUR AU - G. Petrosyan TI - On a boundary value problem for a class of fractional Langevin type differential equations in a Banach space JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2022 SP - 415 EP - 432 VL - 32 IS - 3 UR - http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a4/ LA - ru ID - VUU_2022_32_3_a4 ER -
%0 Journal Article %A G. Petrosyan %T On a boundary value problem for a class of fractional Langevin type differential equations in a Banach space %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2022 %P 415-432 %V 32 %N 3 %U http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a4/ %G ru %F VUU_2022_32_3_a4
G. Petrosyan. On a boundary value problem for a class of fractional Langevin type differential equations in a Banach space. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 3, pp. 415-432. http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a4/
[1] Afanasova M. S., Petrosyan G. G., “On the boundary value problem for functional differential inclusion of fractional order with general initial condition in a Banach space”, Russian Mathematics, 63:9 (2019), 1–11 | DOI | DOI | MR | Zbl
[2] Ilolov M. I., “Fractional linear Volterra integro-differential equations in Banach spaces”, Itogi Nauki i Tekhniki. Seriya “Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory”, 173, 2019, 58–64 (in Russian) | DOI
[3] Petrosyan G. G., “On antiperiodic boundary value problem for semilinear fractional differential inclusion with a deviating argument in Banach space”, Ufa Mathematical Journal, 12:3 (2020), 69–80 | DOI | MR | Zbl
[4] Ahmad B., Ntouyas S. K., Alsaedi A., Alnahdi M., “Existence theory for fractional-order neutral boundary value problems”, Fractional Differential Calculus, 8:1 (2018), 111–126 | DOI | MR | Zbl
[5] Benedetti I., Obukhovskii V., Taddei V., “On noncompact fractional order differential inclusions with generalized boundary condition and impulses in a Banach space”, Journal of Function Spaces, 2015 (2015), 651359 | DOI | MR | Zbl
[6] Gorenflo R., Kilbas A. A., Mainardi F., Rogosin S. V., Mittag–Leffler functions, related topics and applications, Springer, Berlin–Heidelberg, 2014 | DOI | MR | Zbl
[7] Hilfer R., Applications of fractional calculus in physics, World Scientific, Singapore, 2000 | DOI | MR | Zbl
[8] Kamenskii M. I., Obukhovskii V. V., Zecca P., Condensing multivalued maps and semilinear differential inclusions in Banach spaces, De Gruyter, Berlin–New York, 2001 | DOI | MR | Zbl
[9] Kamenskii M. I., Petrosyan G. G., Wen C.-F., “An existence result for a periodic boundary value problem of fractional semilinear differential equations in a Banach space”, Journal of Nonlinear and Variational Analysis, 5:1 (2021), 155–177 | DOI | Zbl
[10] Ke T. D., Loi N. V., Obukhovskii V. V., “Decay solutions for a class of fractional differential variational inequalities”, Fractional Calculus and Applied Analysis, 18:3 (2015), 531–553 | DOI | MR | Zbl
[11] Ke T. D., Obukhovskii V. V., Wong Ch., Yao J.-Ch., “On a class of fractional order differential inclusions with infinite delays”, Applicable Analysis, 92:1 (2013), 115–137 | DOI | MR | Zbl
[12] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006 | MR | Zbl
[13] Mainardi F., Rionero S., Ruggeri T., “On the initial value problem for the fractional diffusion-wave equation”, Waves and Stability in Continuous Media, World Scientific, Singapore, 1994, 246–251 | MR
[14] Ntouyas S. K., Alsaedi A., Ahmad B., “Existence theorems for mixed Riemann–Liouville and Caputo fractional differential equations and inclusions with nonlocal fractional integro-differential boundary conditions”, Fractal and Fractional, 3:2 (2019), 21 | DOI | MR
[15] Obukhovskii V. V., Gel'man B. D., Multivalued maps and differential inclusions. Elements of theory and applications, World Scientific, Hackensack, NJ, 2020 | DOI | MR | Zbl
[16] Petrosyan G. G., “Antiperiodic boundary value problem for a semilinear differential equation of fractional order”, The Bulletin of Irkutsk State University. Series Mathematics, 34 (2020), 51–66 | DOI | MR | Zbl
[17] Podlubny I., Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Academic Press, San Diego, 1998 | MR
[18] Salem A., Alzahrani F., Almaghamsi L., “Fractional Langevin equations with nonlocal integral boundary conditions”, Mathematics, 7:5 (2019), 402 | DOI
[19] Salem A., Alnegga M., “Fractional Langevin equations with multi-point and non-local integral boundary conditions”, Cogent Mathematics and Statistics, 7:1 (2020), 1758361 | DOI | MR | Zbl
[20] Tarasov V. E., Fractional dynamics. Applications of fractional calculus to dynamics of particles, fields and media, Springer, Berlin, 2010 | DOI | MR | Zbl
[21] Wang G., Zhang L., Song G., “Boundary value problem of a nonlinear Langevin equation with two different fractional orders and impulses”, Fixed Point Theory and Applications, 2012:1 (2012), 200 | DOI | MR