On a boundary value problem for a class of fractional Langevin type differential equations in a Banach space
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 3, pp. 415-432 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we consider a boundary value problem for differential equations of Langevin type with the Caputo fractional derivative in a Banach space. It is assumed that the nonlinear part of the equation is a Caratheodory type map. Equations of this type generalize equations of motion in various kinds of media, for example, viscoelastic media or in media where a drag force is expressed using a fractional derivative. We will use the theory of fractional mathematical analysis, the properties of the Mittag–Leffler function, as well as the theory of measures of non-compactness and condensing operators to solve the problem. The initial problem is reduced to the problem of the existence of fixed points of the corresponding resolving integral operator in the space of continuous functions. We will use Sadovskii type fixed point theorem to prove the existence of fixed points of the resolving operator. We will show that the resolving integral operator is condensing with respect to the vector measure of non-compactness in the space of continuous functions and transforms a closed ball in this space into itself.
Keywords: Caputo fractional derivative, Langevin type differential equation, boundary value problem, fixed point, condensing map, measure of noncompactness, Mittag–Leffler function.
@article{VUU_2022_32_3_a4,
     author = {G. Petrosyan},
     title = {On a boundary value problem for a class of fractional {Langevin} type differential equations in a {Banach} space},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {415--432},
     year = {2022},
     volume = {32},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a4/}
}
TY  - JOUR
AU  - G. Petrosyan
TI  - On a boundary value problem for a class of fractional Langevin type differential equations in a Banach space
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2022
SP  - 415
EP  - 432
VL  - 32
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a4/
LA  - ru
ID  - VUU_2022_32_3_a4
ER  - 
%0 Journal Article
%A G. Petrosyan
%T On a boundary value problem for a class of fractional Langevin type differential equations in a Banach space
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2022
%P 415-432
%V 32
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a4/
%G ru
%F VUU_2022_32_3_a4
G. Petrosyan. On a boundary value problem for a class of fractional Langevin type differential equations in a Banach space. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 3, pp. 415-432. http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a4/

[1] Afanasova M. S., Petrosyan G. G., “On the boundary value problem for functional differential inclusion of fractional order with general initial condition in a Banach space”, Russian Mathematics, 63:9 (2019), 1–11 | DOI | DOI | MR | Zbl

[2] Ilolov M. I., “Fractional linear Volterra integro-differential equations in Banach spaces”, Itogi Nauki i Tekhniki. Seriya “Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory”, 173, 2019, 58–64 (in Russian) | DOI

[3] Petrosyan G. G., “On antiperiodic boundary value problem for semilinear fractional differential inclusion with a deviating argument in Banach space”, Ufa Mathematical Journal, 12:3 (2020), 69–80 | DOI | MR | Zbl

[4] Ahmad B., Ntouyas S. K., Alsaedi A., Alnahdi M., “Existence theory for fractional-order neutral boundary value problems”, Fractional Differential Calculus, 8:1 (2018), 111–126 | DOI | MR | Zbl

[5] Benedetti I., Obukhovskii V., Taddei V., “On noncompact fractional order differential inclusions with generalized boundary condition and impulses in a Banach space”, Journal of Function Spaces, 2015 (2015), 651359 | DOI | MR | Zbl

[6] Gorenflo R., Kilbas A. A., Mainardi F., Rogosin S. V., Mittag–Leffler functions, related topics and applications, Springer, Berlin–Heidelberg, 2014 | DOI | MR | Zbl

[7] Hilfer R., Applications of fractional calculus in physics, World Scientific, Singapore, 2000 | DOI | MR | Zbl

[8] Kamenskii M. I., Obukhovskii V. V., Zecca P., Condensing multivalued maps and semilinear differential inclusions in Banach spaces, De Gruyter, Berlin–New York, 2001 | DOI | MR | Zbl

[9] Kamenskii M. I., Petrosyan G. G., Wen C.-F., “An existence result for a periodic boundary value problem of fractional semilinear differential equations in a Banach space”, Journal of Nonlinear and Variational Analysis, 5:1 (2021), 155–177 | DOI | Zbl

[10] Ke T. D., Loi N. V., Obukhovskii V. V., “Decay solutions for a class of fractional differential variational inequalities”, Fractional Calculus and Applied Analysis, 18:3 (2015), 531–553 | DOI | MR | Zbl

[11] Ke T. D., Obukhovskii V. V., Wong Ch., Yao J.-Ch., “On a class of fractional order differential inclusions with infinite delays”, Applicable Analysis, 92:1 (2013), 115–137 | DOI | MR | Zbl

[12] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006 | MR | Zbl

[13] Mainardi F., Rionero S., Ruggeri T., “On the initial value problem for the fractional diffusion-wave equation”, Waves and Stability in Continuous Media, World Scientific, Singapore, 1994, 246–251 | MR

[14] Ntouyas S. K., Alsaedi A., Ahmad B., “Existence theorems for mixed Riemann–Liouville and Caputo fractional differential equations and inclusions with nonlocal fractional integro-differential boundary conditions”, Fractal and Fractional, 3:2 (2019), 21 | DOI | MR

[15] Obukhovskii V. V., Gel'man B. D., Multivalued maps and differential inclusions. Elements of theory and applications, World Scientific, Hackensack, NJ, 2020 | DOI | MR | Zbl

[16] Petrosyan G. G., “Antiperiodic boundary value problem for a semilinear differential equation of fractional order”, The Bulletin of Irkutsk State University. Series Mathematics, 34 (2020), 51–66 | DOI | MR | Zbl

[17] Podlubny I., Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Academic Press, San Diego, 1998 | MR

[18] Salem A., Alzahrani F., Almaghamsi L., “Fractional Langevin equations with nonlocal integral boundary conditions”, Mathematics, 7:5 (2019), 402 | DOI

[19] Salem A., Alnegga M., “Fractional Langevin equations with multi-point and non-local integral boundary conditions”, Cogent Mathematics and Statistics, 7:1 (2020), 1758361 | DOI | MR | Zbl

[20] Tarasov V. E., Fractional dynamics. Applications of fractional calculus to dynamics of particles, fields and media, Springer, Berlin, 2010 | DOI | MR | Zbl

[21] Wang G., Zhang L., Song G., “Boundary value problem of a nonlinear Langevin equation with two different fractional orders and impulses”, Fixed Point Theory and Applications, 2012:1 (2012), 200 | DOI | MR