On a boundary value problem for a class of fractional Langevin type differential equations in a Banach space
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 3, pp. 415-432

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a boundary value problem for differential equations of Langevin type with the Caputo fractional derivative in a Banach space. It is assumed that the nonlinear part of the equation is a Caratheodory type map. Equations of this type generalize equations of motion in various kinds of media, for example, viscoelastic media or in media where a drag force is expressed using a fractional derivative. We will use the theory of fractional mathematical analysis, the properties of the Mittag–Leffler function, as well as the theory of measures of non-compactness and condensing operators to solve the problem. The initial problem is reduced to the problem of the existence of fixed points of the corresponding resolving integral operator in the space of continuous functions. We will use Sadovskii type fixed point theorem to prove the existence of fixed points of the resolving operator. We will show that the resolving integral operator is condensing with respect to the vector measure of non-compactness in the space of continuous functions and transforms a closed ball in this space into itself.
Keywords: Caputo fractional derivative, Langevin type differential equation, boundary value problem, fixed point, condensing map, measure of noncompactness, Mittag–Leffler function.
@article{VUU_2022_32_3_a4,
     author = {G. Petrosyan},
     title = {On a boundary value problem for a class of fractional {Langevin} type differential equations in a {Banach} space},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {415--432},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a4/}
}
TY  - JOUR
AU  - G. Petrosyan
TI  - On a boundary value problem for a class of fractional Langevin type differential equations in a Banach space
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2022
SP  - 415
EP  - 432
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a4/
LA  - ru
ID  - VUU_2022_32_3_a4
ER  - 
%0 Journal Article
%A G. Petrosyan
%T On a boundary value problem for a class of fractional Langevin type differential equations in a Banach space
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2022
%P 415-432
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a4/
%G ru
%F VUU_2022_32_3_a4
G. Petrosyan. On a boundary value problem for a class of fractional Langevin type differential equations in a Banach space. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 3, pp. 415-432. http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a4/