@article{VUU_2022_32_3_a2,
author = {D. K. Durdiev and J. Sh. Safarov},
title = {The problem of determining the memory of an environment with weak horizontal heterogeneity},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {383--402},
year = {2022},
volume = {32},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a2/}
}
TY - JOUR AU - D. K. Durdiev AU - J. Sh. Safarov TI - The problem of determining the memory of an environment with weak horizontal heterogeneity JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2022 SP - 383 EP - 402 VL - 32 IS - 3 UR - http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a2/ LA - ru ID - VUU_2022_32_3_a2 ER -
%0 Journal Article %A D. K. Durdiev %A J. Sh. Safarov %T The problem of determining the memory of an environment with weak horizontal heterogeneity %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2022 %P 383-402 %V 32 %N 3 %U http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a2/ %G ru %F VUU_2022_32_3_a2
D. K. Durdiev; J. Sh. Safarov. The problem of determining the memory of an environment with weak horizontal heterogeneity. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 3, pp. 383-402. http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a2/
[1] Romanov V. G., Stability in inverse problems, Nauchnyi Mir, M., 2005 | MR
[2] Romanov V. G., Inverse problems of mathematical physics, Nauka, M., 1984 | MR
[3] Kabanikhin S. V., Inverse and incorrect problems, Sibirskoe Nauchnoe Izdatel'stvo, Novosibirsk, 2009
[4] Durdiev D. K., Inverse problems for environments with aftereffects, Turon-Iqbol, Tashkent, 2014
[5] Totieva Zh. D., “One-dimensional inverse coefficient problems of anisotropic viscoelasticity”, Sibirskie Èlektronnye Matematicheskie Izvestiya, 16 (2019), 786–811 (in Russian) | DOI | MR | Zbl
[6] Safarov Zh. Sh., Durdiev D. K., “Inverse problem for an integro-differential equation of acoustics”, Differential Equations, 54:1 (2018), 134–142 | DOI | DOI | MR | Zbl
[7] Safarov J. Sh., “Global solvability of the one-dimensional inverse problem for the integro-differential equation of acoustics”, Journal of Siberian Federal University. Mathematics and Physics, 11:6 (2018), 753–763 | DOI | MR | Zbl
[8] Durdiev U. D., “An inverse problem for the system of viscoelasticity equations in homogeneous anisotropic media”, Journal of Applied and Industrial Mathematics, 13 (2019), 623–628 | DOI | DOI | MR
[9] Durdiev D. K., Rakhmonov A. A., “Inverse problem for a system of integro-differential equations for SH waves in a visco-elastic porous medium: global solvability”, Theoretical and Mathematical Physics, 195:6 (2018), 923–937 | DOI | DOI | MR | Zbl
[10] Durdiev D. K., Totieva Zh. D., “The problem of determining the one-dimensional kernel of the electroviscoelasticity equation”, Siberian Mathematical Journal, 58:3 (2017), 427–444 | DOI | DOI | MR | Zbl
[11] Safarov Zh. Sh., “Evaluation of the stability of some inverse problems solutions for integro-differential equations”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2014, no. 3, 75–82 (in Russian) | DOI | Zbl
[12] Durdiev D. K., Nuriddinov Zh. Z., “On investigation of the inverse problem for a parabolic integro-differential equation with a variable coefficient of thermal conductivity”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 30:4 (2020), 572–584 | DOI | MR | Zbl
[13] Durdiev D. K., Safarov Zh. Sh., “Inverse problem of determining the one-dimensional kernel of the viscoelasticity equation in a bounded domain”, Mathematical Notes, 97:6 (2015), 867–877 | DOI | DOI | MR | Zbl
[14] Karchevsky A. L., Turganbayev Y. M., Rakhmetullina S. G., Beldeubayeva Zh. T., “Numerical solution of an inverse problem of determining the parameters of a source of groundwater pollution”, Eurasian Journal of Mathematical and Computer Applications, 5:1 (2017), 53–73 | DOI
[15] Durdiev U. D., “Numerical method for determining the dependence of the dielectric permittivity on the frequency in the equation of electrodynamics with memory”, Sibirskie Èlektronnye Matematicheskie Izvestiya, 17 (2020), 179–189 (in Russian) | DOI | MR | Zbl
[16] Bozorov Z. R., “Numerical determining a memory function of a horizontally-stratified elastic medium with aftereffect”, Eurasian Journal of Mathematical and Computer Applications, 8:2 (2020), 28–40 | DOI | MR
[17] Durdiev D. K., Totieva Zh. D., “About global solvability of a multidimensional inverse problem for an equation with memory”, Siberian Mathematical Journal, 62:2 (2021), 215–229 | DOI | DOI | MR | Zbl
[18] Romanov V. G., “On the determination of the coefficients in the viscoelasticity equations”, Siberian Mathematical Journal, 55:3 (2014), 503–510 | DOI | MR | Zbl
[19] Romanov V. G., “On justification of the Gelfand–Levitan–Krein method for a two-dimensional inverse problem”, Siberian Mathematical Journal, 62:2 (2021), 908–924 | DOI | DOI | MR | MR | Zbl
[20] Romanov V. G., “Phaseless inverse problems for Schrödinger, Helmholtz, and Maxwell equations”, Computational Mathematics and Mathematical Physics, 60:6 (2020), 1045–1062 | DOI | MR | Zbl
[21] Klibanov M. V., Romanov V. G., “Uniqueness of a 3-D coefficient inverse scattering problem without the phase information”, Inverse Problems, 33:9 (2017), 095007 | DOI | MR | Zbl
[22] Klibanov M. V., Romanov V. G., “Two reconstruction procedures for a 3D phaseless inverse scattering problem for the generalized Helmholtz equation”, Inverse Problems, 32:1 (2016), 015005 | DOI | MR | Zbl
[23] Blagoveshchenskii A. S., Fedorenko D. A., “The inverse problem for an acoustic equation in a weakly horizontally inhomogeneous medium”, Journal of Mathematical Sciences, 155:3 (2008), 379–389 | DOI | MR | Zbl
[24] Blagoveshchenskii A. S., “The quasi-two-dimensional inverse problem for the wave equation”, Proceedings of the Steklov Institute of Mathematics, 115 (1971), 63–76 | MR
[25] Totieva Zh. D., “Determining the kernel of the viscoelasticity equation in a medium with slightly horizontal homogeneity”, Siberian Mathematical Journal, 61:2 (2020), 359–378 | DOI | DOI | MR | Zbl
[26] Durdiev D. K., Safarov J. Sh., “2D kernel identification problem in viscoelasticity equation with a weakly horizontal homogeneity”, Sibirskii Zhurnal Industrial'noi Matematiki, 25:1 (2022), 14–38 | DOI | MR
[27] Durdiev D. K., Bozorov Z. R., “A problem of determining the kernel of integrodifferential wave equation with weak horizontal properties”, Dal'nevostochnyi Matematicheskii Zhurnal, 13:2 (2013), 209–221 (in Russian) | MR | Zbl
[28] Durdiev D. K., Rahmonov A. A., “A 2D kernel determination problem in a visco-elastic porous medium with a weakly horizontally inhomogeneity”, Mathematical Methods in the Applied Sciences, 43:15 (2020), 8776–8796 | DOI | MR | Zbl
[29] Akhmatov Z. A., Totieva Zh. D., “Quasi-two-dimensional coefficient inverse problem for the wave equation in a weakly horizontally inhomogeneous medium with memory”, Vladikavkazskii Matematicheskii Zhurnal, 23:4 (2021), 15–27 (in Russian) | DOI | MR | Zbl
[30] Durdiev D. K., Bozorov Z. R., “Quasi-two-dimensional inverse problem of determining the kernel of an integral term in the viscoelasticity equation”, Nauchnyi Vestnik Bukharskogo Gosudarstvennogo Universiteta, 3:79 (2020), 10–21 (in Russian)