On nonlinear metric spaces of functions of bounded variation
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 3, pp. 341-360 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the first part of the paper, the nonlinear metric space $\langle\overline{\rm G}^\infty[a,b],d\rangle$ is defined and studied. It consists of functions defined on the interval $[a,b]$ and taking the values in the extended numeric axis $\overline{\mathbb R}$. For any $x\in\overline{\rm G}^\infty[a,b]$ and $t\in(a,b)$ there are limit numbers $x(t-0),x(t+0) \in\overline{\mathbb R}$ (and numbers $x(a+0),x(b-0)\in\overline{\mathbb R}$). The completeness of the space is proved. It is the closure of the space of step functions in the metric $d$. In the second part of the work, the nonlinear space ${\rm RL}[a,b]$ is defined and studied. Every piecewise smooth function defined on $[a,b]$ is contained in ${\rm RL}[a,b]$. Every function $x\in{\rm RL}[a,b]$ has bounded variation. All one-sided derivatives (with values in the metric space $\langle\overline{\mathbb R},\varrho\rangle$) are defined for it. The function of left-hand derivatives is continuous on the left, and the function of right-hand derivatives is continuous on the right. Both functions extended to the entire interval $[a,b]$ belong to the space $\overline{\rm G}^\infty[a,b]$. In the final part of the paper, two subspaces of the space ${\rm RL}[a,b]$ are defined and studied. In subspaces, promising formulations for the simplest variational problems are stated and discussed.
Keywords: non-linear analysis, non-smooth analysis, bounded variation, one-sided derivative.
@article{VUU_2022_32_3_a0,
     author = {V. N. Baranov and V. I. Rodionov},
     title = {On nonlinear metric spaces of functions of bounded variation},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {341--360},
     year = {2022},
     volume = {32},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a0/}
}
TY  - JOUR
AU  - V. N. Baranov
AU  - V. I. Rodionov
TI  - On nonlinear metric spaces of functions of bounded variation
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2022
SP  - 341
EP  - 360
VL  - 32
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a0/
LA  - ru
ID  - VUU_2022_32_3_a0
ER  - 
%0 Journal Article
%A V. N. Baranov
%A V. I. Rodionov
%T On nonlinear metric spaces of functions of bounded variation
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2022
%P 341-360
%V 32
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a0/
%G ru
%F VUU_2022_32_3_a0
V. N. Baranov; V. I. Rodionov. On nonlinear metric spaces of functions of bounded variation. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 3, pp. 341-360. http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a0/

[1] Rodionov V. I., “On the space of regular smooth functions”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2011, no. 1, 87–98 (in Russian) | DOI | Zbl

[2] Schwartz L., Analyse mathématique, v. I, Hermann, Paris, 1967 | MR | Zbl

[3] Dieudonné J., Foundations of modern analysis, Academic Press, New York–London, 1960 | MR | Zbl

[4] Tvrdý M., “Regulated functions and the Perron–Stieltjes integral”, Časopis pro Pěstování Matematiky, 114:2 (1989), 187–209 | DOI | MR | Zbl

[5] Rodionov V. I., “On family of subspaces of the space of regulated functions”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2009, no. 4, 7–24 (in Russian) | DOI

[6] Hönig Ch. S., Volterra–Stieltjes integral equations. Functional analytic methods, linear constraints, North-Holland, Amsterdam, 1975 | MR | Zbl

[7] Cichoń M., Cichoń K., Satco B., “Measure differential inclusions through selection principles in the space of regulated functions”, Mediterranean Journal of Mathematics, 15:4 (2018), 148 | DOI | MR | Zbl

[8] Hanung U. M., Tvrdý M., “On the relationships between Stieltjes type integrals of Young, Dushnik and Kurzweil”, Mathematica Bohemica, 144:4 (2019), 357–372 | DOI | MR | Zbl

[9] Federson M., Mesquita J. G., Slavík A., “Basic results for functional differential and dynamic equations involving impulses”, Mathematische Nachrichten, 286:2–3 (2013), 181–204 | DOI | MR | Zbl

[10] Monteiro G. A., Slavík A., “Extremal solutions of measure differential equations”, Journal of Mathematical Analysis and Applications, 444:1 (2016), 568–597 | DOI | MR | Zbl

[11] Monteiro G. A., Hanung U. M., Tvrdý M., “Bounded convergence theorem for abstract Kurzweil–Stieltjes integral”, Monatshefte für Mathematik, 180:3 (2016), 409–434 | DOI | MR | Zbl

[12] Rodionov V. I., “On a family of analogs of the Perron–Stieltjes integral”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2011, no. 3, 95–106 (in Russian) | DOI | Zbl

[13] Derr V. Ya., “On the extension of a Rieman–Stieltjes integral”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 29:2 (2019), 135–152 (in Russian) | DOI | MR | Zbl

[14] Derr V. Ya., Kim I. G., “The spaces of regulated functions and differential equations with generalized functions in coefficients”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2014, no. 1, 3–18 (in Russian) | DOI | Zbl

[15] Rodionov V. I., “Analogue of the Cauchy matrix for system of quasi-integral equations with constant coefficients”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2012, no. 2, 44–62 (in Russian) | DOI | Zbl

[16] Ioffe A. D., Tikhomirov V. M., “Extension of variational problems”, Trudy Moskovskogo Matematicheskogo Obshchestva, 18, 1968, 187–246 (in Russian) | MR | Zbl

[17] Miller B. M., Rubinovich E. Ya., “Discontinuous solutions in the optimal control problems and their representation by singular space-time transformations”, Automation and Remote Control, 74:12 (2013), 1969–2006 | DOI | MR | Zbl

[18] Voitushenko E. S., “Weakly nonlinear impulsive problems for degenerate differential systems”, Journal of Mathematical Sciences, 220:4 (2017), 394–401 | DOI | MR | Zbl

[19] Maksimov V. P., “The structure of the Cauchy operator to a linear continuous-discrete functional differential system with aftereffect and some properties of its components”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 29:1 (2019), 40–51 | DOI | MR | Zbl

[20] Maksimov V. P., “On a class of optimal control problems for functional differential systems”, Proceedings of the Steklov Institute of Mathematics, 305, suppl. 1 (2019), S114–S124 | DOI | DOI | MR | Zbl

[21] Maksimov V. P., “Continuous-discrete dynamic models”, Ufa Mathematical Journal, 13:3 (2021), 95–103 | DOI | MR | Zbl

[22] Shilov G. E., Mathematical analysis. Functions of one variable, v. 1–2, Nauka, M., 1969 | MR

[23] Kolmogorov A. N., Fomin S. V., Elements of the theory of functions and functional analysis, Nauka, M., 1981 | MR

[24] Rudin W., Functional analysis, McGraw-Hill, New York, 1973 | MR | MR | Zbl

[25] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimal control, Nauka, M., 1979 | MR