On nonlinear metric spaces of functions of bounded variation
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 3, pp. 341-360
Voir la notice de l'article provenant de la source Math-Net.Ru
In the first part of the paper, the nonlinear metric space $\langle\overline{\rm G}^\infty[a,b],d\rangle$ is defined and studied. It consists of functions defined on the interval $[a,b]$ and taking the values in the extended numeric axis $\overline{\mathbb R}$. For any $x\in\overline{\rm G}^\infty[a,b]$ and $t\in(a,b)$ there are limit numbers $x(t-0),x(t+0) \in\overline{\mathbb R}$ (and numbers $x(a+0),x(b-0)\in\overline{\mathbb R}$). The completeness of the space is proved. It is the closure of the space of step functions in the metric $d$. In the second part of the work, the nonlinear space ${\rm RL}[a,b]$ is defined and studied. Every piecewise smooth function defined on $[a,b]$ is contained in ${\rm RL}[a,b]$. Every function $x\in{\rm RL}[a,b]$ has bounded variation. All one-sided derivatives (with values in the metric space $\langle\overline{\mathbb R},\varrho\rangle$) are defined for it. The function of left-hand derivatives is continuous on the left, and the function of right-hand derivatives is continuous on the right. Both functions extended to the entire interval $[a,b]$ belong to the space $\overline{\rm G}^\infty[a,b]$. In the final part of the paper, two subspaces of the space ${\rm RL}[a,b]$ are defined and studied. In subspaces, promising formulations for the simplest variational problems are stated and discussed.
Keywords:
non-linear analysis, non-smooth analysis, bounded variation, one-sided derivative.
@article{VUU_2022_32_3_a0,
author = {V. N. Baranov and V. I. Rodionov},
title = {On nonlinear metric spaces of functions of bounded variation},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {341--360},
publisher = {mathdoc},
volume = {32},
number = {3},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a0/}
}
TY - JOUR AU - V. N. Baranov AU - V. I. Rodionov TI - On nonlinear metric spaces of functions of bounded variation JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2022 SP - 341 EP - 360 VL - 32 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a0/ LA - ru ID - VUU_2022_32_3_a0 ER -
%0 Journal Article %A V. N. Baranov %A V. I. Rodionov %T On nonlinear metric spaces of functions of bounded variation %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2022 %P 341-360 %V 32 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a0/ %G ru %F VUU_2022_32_3_a0
V. N. Baranov; V. I. Rodionov. On nonlinear metric spaces of functions of bounded variation. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 3, pp. 341-360. http://geodesic.mathdoc.fr/item/VUU_2022_32_3_a0/