@article{VUU_2022_32_2_a9,
author = {P. S. Krasil'nikov},
title = {On the exo-planet precession under torqes due to three celestial bodies with the evolution of the satellite's orbit},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {319--337},
year = {2022},
volume = {32},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_2_a9/}
}
TY - JOUR AU - P. S. Krasil'nikov TI - On the exo-planet precession under torqes due to three celestial bodies with the evolution of the satellite's orbit JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2022 SP - 319 EP - 337 VL - 32 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2022_32_2_a9/ LA - ru ID - VUU_2022_32_2_a9 ER -
%0 Journal Article %A P. S. Krasil'nikov %T On the exo-planet precession under torqes due to three celestial bodies with the evolution of the satellite's orbit %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2022 %P 319-337 %V 32 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2022_32_2_a9/ %G ru %F VUU_2022_32_2_a9
P. S. Krasil'nikov. On the exo-planet precession under torqes due to three celestial bodies with the evolution of the satellite's orbit. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 2, pp. 319-337. http://geodesic.mathdoc.fr/item/VUU_2022_32_2_a9/
[1] Armstrong J. C., Barnes R., Domagal-Goldman S., Breiner J., Quinn T. R., Meadows V. S., “Effects of extreme obliquity variations on the habitability of exoplanets”, Astrobiology, 14:4 (2014), 277–291 | DOI
[2] Cowan N. B., Voigt A., Abbot D. S., “Thermal phases of Earth-like planets: estimating thermal inertia from eccentricity, obliquity, and diurnal forcing”, The Astrophysical Journal, 757:1 (2012), 80 | DOI
[3] Heller R., Leconte J., Barnes R., “Tidal obliquity evolution of potentially habitable planets”, Astronomy and Astrophysics, 528 (2011), 27 | DOI
[4] Ferreira D., Marshall J., O'Gorman P. A., Seager S., “Climate at high-obliquity”, Icarus, 243 (2014), 236–248 | DOI
[5] Kilic C., Raible C. C., Stocker T. F., “Multiple climate states of habitable exoplanets: The role of obliquity and irradiance”, The Astrophysical Journal, 844:2 (2017), 147 | DOI
[6] Milankovitch M., Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem, Serbian Academy, Belgrade, 1941 | MR
[7] Williams D. M., Pollard D., “Extraordinary climates of Earth-like planets: three-dimensional climate simulations at extreme obliquity”, International Journal of Astrobiology, 2:1 (2003), 1–19 | DOI
[8] Drysdale R. N., Hellstrom J. C., Zanchetta G., Fallick A. E., Sánchez Go{ñ}i M. F., Couchoud I., McDonald J., Maas R., Lohmann G., Isola I., “Evidence for obliquity forcing of glacial termination. II”, Science, 325:5947 (2009), 1527–1531 | DOI
[9] Williams D. M., Kasting J. F., “Habitable planets with high obliquities”, Icarus, 129:1 (1997), 254–267 | DOI
[10] Li G., Batygin K., “On the spin-axis dynamics of a Moonless Earth”, The Astrophysical Journal, 790:1 (2014), 69 | DOI
[11] Shan Y., Li G., “Obliquity variations of habitable zone planets Kepler-62f and Kepler-186f”, The Astronomical Journal, 155:6 (2018), 237 | DOI
[12] Quarles B., Barnes J. W., Lissauer J. J., Chambers J., “Obliquity evolution of the potentially habitable exoplanet Kepler-62f”, Astrobiology, 20:1 (2020), 73–90 | DOI
[13] Laskar J., Joutel F., Boudin F., “Orbital, precessional, and insolation quantities for the Earth from $-20$ Myr to $+10$ Myr”, Astronomy and Astrophysics, 270:1–2 (1993), 522–533 https://adsabs.harvard.edu/pdf/1993A&A...270..522L
[14] Laskar J., Robutel P., “The chaotic obliquity of the planets”, Nature, 361:6413 (1993), 608–612 | DOI
[15] Laskar J., Joutel F., Robutel P., “Stabilization the Earth's obliquity by the Moon”, Nature, 361:6413 (1993), 615–617 | DOI
[16] Quillen A. C., Chen Y.-Y., Noyelles B., Loane S., “Tilting Styx and Nix but not Uranus with a spin-precession-mean-motion resonance”, Celestial Mechanics and Dynamical Astronomy, 130:2 (2018), 11 | DOI | MR | Zbl
[17] Spiegel D. S., Raymond S. N., Dressing C. D., Scharf C. A., Mitchell J. L., “Generalized Milankovitch cycles and long-term climatic habitability”, The Astrophysical Journal, 721:2 (2010), 1308–1318 | DOI
[18] Ward W. R., Hamilton D. P., “Tilting Saturn. I. Analytic model”, The Astronomical Journal, 128:5 (2004), 2501–2509 | DOI
[19] Ward W. R., Hamilton D. P., “Tilting Saturn. II. Numerical model”, The Astronomical Journal, 128:5 (2004), 2510–2517 | DOI
[20] Krasil'nikov P. S., Amelin R. N., “On the precession of Saturn”, Cosmic Research, 56:4 (2018), 306–316 | DOI | DOI
[21] Krasil'nikov P. S., Rotations of a rigid body about the center of mass in the restricted three-body problem, Moscow Aviation Institute, M., 2018
[22] Krasil'nikov P. S., Podvigina O. M., “On evolution of the planet's obliquity in a non-resonant planetary system”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 28:4 (2018), 549–564 (in Russian) | DOI | MR | Zbl
[23] Correia A. C. M., “Stellar and planetary Cassini states”, Astronomy and Astrophysics, 582 (2015), 69 | DOI
[24] Lhotka C., “Steady state obliquity of a rigid body in the spin-orbit resonant problem: Application to Mercury”, Celestial Mechanics and Dynamical Astronomy, 129:4 (2017), 397–414 | DOI | MR | Zbl
[25] Colombo G., “Cassini's second and third laws”, The Astronomical Journal, 71:9 (1966), 891 | DOI
[26] Ward W. R., “Tidal friction and generalized Cassini's laws in the solar system”, The Astronomical Journal, 80 (1975), 64–70 | DOI
[27] Beletskii V. V., “Resonance rotation of celestial bodies and Cassini's laws”, Celestial Mechanics, 6:3 (1972), 356–378 | DOI | MR | Zbl
[28] Lidov M. L., Neishtadt A. I., The method of canonical transformations in the problems of rotation of celestial bodies and Cassini's laws, Preprint No 9, Institute of Applied Mathematics of RAS, 1973 (in Russian)
[29] Beletskii V. V., The motion of a satellite relative to the center of mass in a gravitational field, Moscow State University, M., 1975
[30] Peale S. J., “The proximity of Mercury's spin to Cassini state 1 from adiabatic invariance”, Icarus, 181:2 (2006), 338–347 | DOI
[31] Tisserand F. F., Traité de mécanique céleste, v. II, Théorie de la figure des corps célestes et de leur mouvement de rotation, Gauthier–Villars et fils, Paris, 1891 https://gallica.bnf.fr/ark:/12148/bpt6k6537806n
[32] Smart W. M., Celestial mechanics, Longmans, Green and Co, London–New York–Toronto, 1953 | MR | Zbl
[33] Krasinsky G. A., “Critical inclinations in planetary problem”, Celestial Mechanics, 6:1 (1972), 60–83 | DOI | MR | Zbl
[34] Lidov M. L., “The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies”, Planetary and Space Science, 9:10 (1962), 719–759 | DOI | Zbl
[35] Lidov M. L., “Approximate analysis of the evolution of orbits of artificial satellites”, Problemy dvizheniya iskusstvennykh nebesnykh tel, Academy of Sciences of the Soviet Union, M., 1963
[36] Balk M. B., Elements of space flight dynamics, Nauka, M., 1965
[37] Krasil'nikov P. S., Zakharova E. E., “Nonresonant rotations of a satellite about its center of mass in the restricted $N$-body problem”, Cosmic Research, 31:6 (1994), 596–604
[38] Podvigina O. M., Krasilnikov P. S. Evolution of the obliquity of an exoplanet: A non-resonant case, Icarus, 335 (2020), 113371 | DOI | MR
[39] https://exoplanets.nasa.gov/exoplanet-catalog/6987/7-canis-majoris-b/
[40] https://www.iers.org/IERS/EN/Publications/TechnicalNotes/tn32.html
[41] Shen W., Chen W., Sun R., “Earth's temporal principal moments of inertia and variable rotation”, Geo-spatial Information Science, 11:2 (2008), 127–132 | DOI