Mots-clés : polynomial solution
@article{VUU_2022_32_2_a8,
author = {A. V. Zyza and T. V. Khomyak and E. S. Platonova},
title = {New classes of particular solutions to one problem on gyrostat motion},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {298--318},
year = {2022},
volume = {32},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_2_a8/}
}
TY - JOUR AU - A. V. Zyza AU - T. V. Khomyak AU - E. S. Platonova TI - New classes of particular solutions to one problem on gyrostat motion JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2022 SP - 298 EP - 318 VL - 32 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2022_32_2_a8/ LA - ru ID - VUU_2022_32_2_a8 ER -
%0 Journal Article %A A. V. Zyza %A T. V. Khomyak %A E. S. Platonova %T New classes of particular solutions to one problem on gyrostat motion %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2022 %P 298-318 %V 32 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2022_32_2_a8/ %G ru %F VUU_2022_32_2_a8
A. V. Zyza; T. V. Khomyak; E. S. Platonova. New classes of particular solutions to one problem on gyrostat motion. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 2, pp. 298-318. http://geodesic.mathdoc.fr/item/VUU_2022_32_2_a8/
[1] Kharlamov P. V., Lectures on solid dynamics, Novosibirsk State University, Novosibirsk, 1965
[2] Gashenenko I. N., Gorr G. V., Kovalev A. M., Classical problems of solid dynamics, Naukova Dumka, Kiev, 2012 | MR
[3] Gorr G. V., Maznev A. V., Dynamics of a gyrostat with a fixed point, Donetsk National University, Donetsk, 2010
[4] Thomson W., “On the motion of rigid solids in a liquid circulating irrotationally through perforations in them or in any fixed solid”, Proceedings of the Royal Society of Edinburgh, 7 (1872), 668–682 | DOI
[5] Volterra V., “Sur la théorie des variations des latitudes”, Acta Mathematica, 22 (1899), 201–357 | DOI | MR
[6] Zhukovskii N. E., “On the motion of a solid body having cavities filled with a homogeneous dropping liquid”, Collected works, v. 1, Gostekhteorizdat, M., 1949, 31–152 (in Russian)
[7] Gray A., A treatise on gurostatics and rotational motion, Dover, New York, 1959 | MR
[8] Levi-Civita T., Amaldi U., Lezioni di meccanica razionale, Parte Seconda, v. 2, Dinamica dei sistemi con un numero finito di gradi di libertá, Nicola Zanichelli, Bologna, 1927 | MR
[9] Rumyantsev V. V., “On orientation control and satellite stabilization by rotors”, Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 1970, no. 2, 83–96 (in Russian) | Zbl
[10] Kharlamov P. V., “On the equations of motion of a system of solids”, Respublikanskii mezhvedomstvennyi sbornik, Mekhanika Tverdogo Tela, 4, Naukova dumka, Kiev, 1972, 52–73 (in Russian)
[11] Kharlamov P. V., “On the invariant relations of a system of differential equations”, Respublikanskii mezhvedomstvennyi sbornik, Mekhanika Tverdogo Tela, 6, Naukova dumka, Kiev, 1974, 15–24 (in Russian) | Zbl
[12] Gorr G. V., “On three invariant relations of the equations of motion of a body in a potential field of force”, Mechanics of Solids, 54:2 (2019), 234–244 | DOI | DOI | MR | Zbl
[13] Gorr G. V., “An approach in studying gyrostat motion with variable gyrostatic moment”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 31:1 (2021), 102–115 (in Russian) | DOI | MR | Zbl
[14] Gorr G. V., Tkachenko D. N., Shchetinina E. K., “Research on the motion of a body in a potential force field in the case of three invariant relations”, Russian Journal of Nonlinear Dynamics, 15:3 (2019), 327–342 | DOI | MR | Zbl
[15] Ol'shanskii V. Yu., “Linear invariant relations of Kirchhoff's equations”, Journal of Applied Mathematics and Mechanics, 79:4 (2015), 334–349 | DOI | MR
[16] Ol'shanskii V. Yu., “Construction of linear invariant relations of Kirchhoff equations”, Mechanics of Solids, 54:1 (2019), 70–80 | DOI | DOI
[17] Doroshin A. V., “Analytical solutions for dynamics of dual-spin spacecraft and gyrostat-satellites under magnetic attitude control in omega-regimes”, International Journal of Non-Linear Mechanics, 96 (2017), 64–74 | DOI
[18] Doroshin A. V., “Regimes of regular and chaotic motion of gyrostats in the central gravity field”, Communications in Nonlinear Science and Numerical Simulation, 69 (2019), 416–431 | DOI | MR | Zbl
[19] Aslanov V. S., “A note on the “Exact solutions for angular motion of coaxial bodies and attitude dynamics of gyrostat-satellites””, International Journal of Non-Linear Mechanics, 58 (2014), 305–306 | DOI
[20] Yehia H. M., El-kenani H. N., “Effect of the gravity and magnetic field to find regular precessions of a satellite-gyrostat with principal axes on a circular orbit”, Journal of Applied and Computational Mechanics, 7:4 (2021), 2120–2128 | DOI
[21] El-Sabaa F. M., Amer T. S., Sallam A. A., Abady I. M., “Modeling and analysis of the nonlinear rotatory motion of an electromagnetic gyrostat”, Alexandria Engineering Journal, 61:2 (2021), 1625–1641 | DOI
[22] Yehia H. M., “New solvable problems in the dynamics of a rigid body about a fixed point in a potential field”, Mechanics Research Communications, 57 (2014), 44–48 | DOI | MR
[23] Yehia H. M., Saleh E., Megahid S. F., “New solutions of classical problems in rigid body dynamics”, Mechanics Research Communications, 69 (2015), 40–44 | DOI
[24] Yehia H. M., Elmandouh A. A., “A new conditional integrable case in the dynamics of a rigid body-gyrostat”, Mechanics Research Communications, 78, Part A (2016), 25–27 | DOI | MR
[25] Amer T. S., Amer W. S., “Substantial condition for the fourth first integral of the rigid body problem”, Mathematics and Mechanics of Solids, 23:8 (2018), 1237–1246 | DOI | MR | Zbl
[26] Amer T. S., Farag A. M., Amer W. S., “The dynamical motion of a rigid body for the case of ellipsoid inertia close to ellipsoid of rotation”, Mechanics Research Communications, 108 (2020), 103583 | DOI
[27] Doroshin A. V., “Exact solutions for angular motion of coaxial bodies and attitude dynamics of gyrostat-satellites”, International Journal of Non-Linear Mechanics, 50 (2013), 68–74 | DOI
[28] Aslanov V., Yudintsev V., “Dynamics and chaos control of gyrostat satellite”, Chaos, Solitons and Fractals, 45:9–10 (2012), 1100–1107 | DOI | MR | Zbl
[29] Barnett S. J., “Gyromagnetic and electron-inertia effects”, Reviews of Modern Physics, 7:2 (1935), 129–166 | DOI
[30] London F., Superfluids, v. 1, Macroscopic theory of superconductivity, Wiley, New York, 1950 | Zbl
[31] Kittel Ch., Introduction to solid state physics, Wiley, New York, 2005
[32] Ziglin S. L., “Branching of solutions and nonexistence of first integrals in Hamiltonian mechanics. I”, Functional Analysis and Its Applications, 16:3 (1982), 181–189 | DOI | MR | MR
[33] Samsonov V. A., “On the rotation of a solid in a magnetic field”, Izvestiya Akademii Nauk SSSR. Mekhanika Tverdogo Tela, 1984, no. 6, 32–34 (in Russian)
[34] Kozlov V. V., “To the problem of rotation of a solid body in a magnetic field”, Izvestiya Akademii Nauk SSSR. Mekhanika Tverdogo Tela, 1985, no. 6, 28–33 (in Russian) | Zbl
[35] Kharlamov P. V., “The current state and prospects for the development of the classical problems of solid state dynamics”, Mekhanika Tverdogo Tela, 2000, no. 30, 1–12 (in Russian) | MR
[36] Klen F., Sommerfeld A., {Ü}ber die Theorie des Kreisels, v. 4, Teubner, Leipzig, 1965 | MR
[37] Zyza A. V., “Computer studies of polynomial solutions for gyrostat dynamics”, Komp'yuternye Issledovaniya i Modelirovanie, 10:1 (2018), 7–25 (in Russian) | DOI | MR
[38] Zyza A. V., “On generalized N. Kovalevski equations in two problems of rigid body dynamics”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 29:1 (2019), 73–83 (in Russian) | DOI | MR | Zbl
[39] Zyza A. V., Khomyak T. V., “On one case of integrability of the motion equations of a rigid body in magnetic field”, Vestnik Donetskogo Natsional'nogo Universiteta. Seriya A: Estestvennye Nayki, 2012, no. 2, 31–35 (in Russian)
[40] Borisov A. V., Tsiganov A. V., “The motion of a nonholonomic Chaplygin sphere in a magnetic field, the Grioli problem, and the Barnett–London effect”, Doklady Physics, 65:3 (2020), 90–93 | DOI | MR