Inverse image of precompact sets and regular solutions to the Navier-Stokes equations
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 2, pp. 278-297 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the initial value problem for the Navier–Stokes equations over ${\mathbb R}^3 \times [0,T]$ with time $T>0$ in the spatially periodic setting. We prove that it induces open injective mappings ${\mathcal A}_s\colon B^{s}_1 \to B^{s-1}_2$ where $B^{s}_1$, $B^{s-1}_2$ are elements from scales of specially constructed function spaces of Bochner–Sobolev type parametrized with the smoothness index $s \in \mathbb N$. Finally, we prove that a map ${\mathcal A}_s$ is surjective if and only if the inverse image ${\mathcal A}_s ^{-1}(K)$ of any precompact set $K$ from the range of the map ${\mathcal A}_s$ is bounded in the Bochner space $L^{\mathfrak s} ([0,T], L^{{\mathfrak r}} ({\mathbb T}^3))$ with the Ladyzhenskaya–Prodi–Serrin numbers ${\mathfrak s}$, ${\mathfrak r}$.
Keywords: Navier–Stokes equations, regular solutions.
@article{VUU_2022_32_2_a7,
     author = {A. A. Shlapunov and N. N. Tarkhanov},
     title = {Inverse image of precompact sets and regular solutions to the {Navier-Stokes} equations},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {278--297},
     year = {2022},
     volume = {32},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_2_a7/}
}
TY  - JOUR
AU  - A. A. Shlapunov
AU  - N. N. Tarkhanov
TI  - Inverse image of precompact sets and regular solutions to the Navier-Stokes equations
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2022
SP  - 278
EP  - 297
VL  - 32
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2022_32_2_a7/
LA  - en
ID  - VUU_2022_32_2_a7
ER  - 
%0 Journal Article
%A A. A. Shlapunov
%A N. N. Tarkhanov
%T Inverse image of precompact sets and regular solutions to the Navier-Stokes equations
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2022
%P 278-297
%V 32
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2022_32_2_a7/
%G en
%F VUU_2022_32_2_a7
A. A. Shlapunov; N. N. Tarkhanov. Inverse image of precompact sets and regular solutions to the Navier-Stokes equations. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 2, pp. 278-297. http://geodesic.mathdoc.fr/item/VUU_2022_32_2_a7/

[1] Adams R. A., Sobolev spaces, Academic Press, 2003 | MR | Zbl

[2] Agranovich M. S., “Elliptic operators on closed manifolds”, Encyclopaedia of Mathematical Sciences, 63, Springer, Berlin, 1994, 1–130 | DOI | Zbl

[3] Barker T., Seregin G., Šverák V., “On stability of weak Navier–Stokes solutions with large $L^{3,\infty}$ initial data”, Communications in Partial Differential Equations, 43:4 (2018), 628–651 | DOI | MR | Zbl

[4] Barker T., Seregin G., “A necessary condition of potential blowup for the Navier–Stokes system in half-space”, Mathematische Annalen, 369:3–4 (2017), 1327–1352 | DOI | MR | Zbl

[5] Choe H. J., Wolf J., Yang M., “A new local regularity criterion for suitable weak solutions of the Navier–Stokes equations in terms of the velocity gradient”, Mathematische Annalen, 370:1–2 (2018), 629–647 | DOI | MR | Zbl

[6] da Veiga H. B., “On the extension to slip boundary conditions of a Bae and Choe regularity criterion for the Navier–Stokes equations. The half-space case”, Journal of Mathematical Analysis and Applications, 453:1 (2017), 212–220 | DOI | MR | Zbl

[7] da Veiga H. B., Yang J., “Navier–Stokes equations under slip boundary conditions: Lower bounds to the minimal amplitude of possible time-discontinuities of solutions with two components in $L^\infty$ ($L^3$)”, Science China Mathematics, 2021 | DOI | MR

[8] Escauriaza L., Seregin G. A., Šverak V., “$L_{3,\infty}$-solutions of the Navier–Stokes equations and backward uniqueness”, Russian Mathematical Surveys, 58:2 (2003), 211–250 | DOI | DOI | MR | Zbl

[9] Farwig R., Giga Y., Hsu P.-Y., “On the continuity of the solutions to the Navier–Stokes equations with initial data in critical Besov spaces”, Annali di Matematica Pura ed Applicata, 198:5 (2019), 1495–1511 | DOI | MR | Zbl

[10] Hamilton R. S., “The inverse function theorem of Nash and Moser”, Bulletin of the American Mathematical Society, 7:1 (1982), 65–222 | DOI | MR | Zbl

[11] Hopf E., “{Ü}ber die Anfangswertaufgabe f{ü}r die hydrodynamischen Grundgleichungen”, Mathematische Nachrichten, 4:1–6 (1950), 213–231 | DOI | MR

[12] Jia H., Sverak V., Are the incompressible 3d Navier–Stokes equations locally ill–posed in the natural energy space?, Journal of Functional Analysis, 268:12 (2015), 3734–3766 | DOI | MR | Zbl

[13] Jiu Q., Wang Y., Zhou D., “On Wolf's regularity criterion of suitable weak solutions to the Navier–Stokes equations”, Journal of Mathematical Fluid Mechanics, 21:2 (2019), 22 | DOI | MR | Zbl

[14] Ladyzhenskaya O. A., “Uniqueness and smoothness of generalized solutions of the Navier–Stokes equation”, Sem. Math. V. A. Steklov Math. Inst. Leningrad, 5, 1969, 60–66 | MR | Zbl

[15] Ladyzhenskaya O. A., Mathematical problems of incompressible viscous fluid, Nauka, M., 1970 | MR

[16] Ladyzhenskaya O. A., Solonnikov V. A., Ural'tseva N. N., Linear and quasilinear equations of parabolic type, Nauka, M., 1967 | MR

[17] Leray J., “Sur le mouvement d'un liquide visqueux emplissant l'espace”, Acta Mathematica, 63 (1934), 193–248 | DOI | MR | Zbl

[18] Lions J.-L., Équations différentielles opérationelles. Et problèmes aux limites, Springer, Berlin, 1961 | DOI | MR

[19] Lions J.-L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969 | MR

[20] Mitrinović D. S., Pečarić J. E., Fink A. M., Inequalities involving functions and their integrals and derivatives, Kluwer Academic Publishers, Dordrecht, 1991 | DOI | MR | Zbl

[21] Nirenberg L., “On elliptic partial differential equations”, Annali della Scuola Normale Superiore di Pisa — Classe di Scienze, Série 3, 13:2 (1959), 115–162 http://www.numdam.org/item/ASNSP_1959_3_13_2_115_0/ | MR | Zbl

[22] Polkovnikov A., “An open mapping theorem for nonlinear operator equations associated with elliptic complexes”, Applicable Analysis, 2021, 23 pp. | DOI

[23] Prodi G., “Un teorema di unicitá per le equazioni di Navier–Stokes”, Annali di Matematica Pura ed Applicata, 48:1 (1959), 173–182 | DOI | MR | Zbl

[24] Seregin G., Šverák V., “On global weak solutions to the Cauchy problem for the Navier–Stokes equations with large $L_3$-initial data”, Nonlinear Analysis: Theory, Methods and Applications, 154 (2017), 269–296 | DOI | MR | Zbl

[25] Serrin J., “Mathematical principles of classical fluid mechanics”, Fluid Dynamics, v. I, Springer, Berlin, 1959, 125–263 | DOI | MR

[26] Serrin J., “On the interior regularity of weak solutions of the Navie–Stokes equations”, Archive for Rational Mechanics and Analysis, 9:1 (1962), 187–195 | DOI | MR | Zbl

[27] Shlapunov A. A., Tarkhanov N., “An open mapping theorem for the Navier–Stokes type equations associated with the de Rham complex over ${\mathbb R}^n$”, Siberian Electronic Mathematical Reports, 18:2 (2021), 1433–1466 | DOI | MR | Zbl

[28] Smale S., “An infinite dimensional version of Sard's theorem”, American Journal of Mathematics, 87:4 (1965), 861–866 | DOI | MR | Zbl

[29] Temam R., Navier–Stokes equations. Theory and numerical analysis, North Holland, Amsterdam, 1979 | MR | Zbl

[30] Temam R., Navier–Stokes equations and nonlinear functional analysis, SIAM, Philadelphia, 1995 | DOI | MR | Zbl

[31] Tao T., “Finite time blow-up for an averaged three-dimensional Navier–Stokes equation”, Journal of the American Mathematical Society, 29:3 (2015), 601–674 | DOI | MR