@article{VUU_2022_32_2_a7,
author = {A. A. Shlapunov and N. N. Tarkhanov},
title = {Inverse image of precompact sets and regular solutions to the {Navier-Stokes} equations},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {278--297},
year = {2022},
volume = {32},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_2_a7/}
}
TY - JOUR AU - A. A. Shlapunov AU - N. N. Tarkhanov TI - Inverse image of precompact sets and regular solutions to the Navier-Stokes equations JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2022 SP - 278 EP - 297 VL - 32 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2022_32_2_a7/ LA - en ID - VUU_2022_32_2_a7 ER -
%0 Journal Article %A A. A. Shlapunov %A N. N. Tarkhanov %T Inverse image of precompact sets and regular solutions to the Navier-Stokes equations %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2022 %P 278-297 %V 32 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2022_32_2_a7/ %G en %F VUU_2022_32_2_a7
A. A. Shlapunov; N. N. Tarkhanov. Inverse image of precompact sets and regular solutions to the Navier-Stokes equations. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 2, pp. 278-297. http://geodesic.mathdoc.fr/item/VUU_2022_32_2_a7/
[1] Adams R. A., Sobolev spaces, Academic Press, 2003 | MR | Zbl
[2] Agranovich M. S., “Elliptic operators on closed manifolds”, Encyclopaedia of Mathematical Sciences, 63, Springer, Berlin, 1994, 1–130 | DOI | Zbl
[3] Barker T., Seregin G., Šverák V., “On stability of weak Navier–Stokes solutions with large $L^{3,\infty}$ initial data”, Communications in Partial Differential Equations, 43:4 (2018), 628–651 | DOI | MR | Zbl
[4] Barker T., Seregin G., “A necessary condition of potential blowup for the Navier–Stokes system in half-space”, Mathematische Annalen, 369:3–4 (2017), 1327–1352 | DOI | MR | Zbl
[5] Choe H. J., Wolf J., Yang M., “A new local regularity criterion for suitable weak solutions of the Navier–Stokes equations in terms of the velocity gradient”, Mathematische Annalen, 370:1–2 (2018), 629–647 | DOI | MR | Zbl
[6] da Veiga H. B., “On the extension to slip boundary conditions of a Bae and Choe regularity criterion for the Navier–Stokes equations. The half-space case”, Journal of Mathematical Analysis and Applications, 453:1 (2017), 212–220 | DOI | MR | Zbl
[7] da Veiga H. B., Yang J., “Navier–Stokes equations under slip boundary conditions: Lower bounds to the minimal amplitude of possible time-discontinuities of solutions with two components in $L^\infty$ ($L^3$)”, Science China Mathematics, 2021 | DOI | MR
[8] Escauriaza L., Seregin G. A., Šverak V., “$L_{3,\infty}$-solutions of the Navier–Stokes equations and backward uniqueness”, Russian Mathematical Surveys, 58:2 (2003), 211–250 | DOI | DOI | MR | Zbl
[9] Farwig R., Giga Y., Hsu P.-Y., “On the continuity of the solutions to the Navier–Stokes equations with initial data in critical Besov spaces”, Annali di Matematica Pura ed Applicata, 198:5 (2019), 1495–1511 | DOI | MR | Zbl
[10] Hamilton R. S., “The inverse function theorem of Nash and Moser”, Bulletin of the American Mathematical Society, 7:1 (1982), 65–222 | DOI | MR | Zbl
[11] Hopf E., “{Ü}ber die Anfangswertaufgabe f{ü}r die hydrodynamischen Grundgleichungen”, Mathematische Nachrichten, 4:1–6 (1950), 213–231 | DOI | MR
[12] Jia H., Sverak V., Are the incompressible 3d Navier–Stokes equations locally ill–posed in the natural energy space?, Journal of Functional Analysis, 268:12 (2015), 3734–3766 | DOI | MR | Zbl
[13] Jiu Q., Wang Y., Zhou D., “On Wolf's regularity criterion of suitable weak solutions to the Navier–Stokes equations”, Journal of Mathematical Fluid Mechanics, 21:2 (2019), 22 | DOI | MR | Zbl
[14] Ladyzhenskaya O. A., “Uniqueness and smoothness of generalized solutions of the Navier–Stokes equation”, Sem. Math. V. A. Steklov Math. Inst. Leningrad, 5, 1969, 60–66 | MR | Zbl
[15] Ladyzhenskaya O. A., Mathematical problems of incompressible viscous fluid, Nauka, M., 1970 | MR
[16] Ladyzhenskaya O. A., Solonnikov V. A., Ural'tseva N. N., Linear and quasilinear equations of parabolic type, Nauka, M., 1967 | MR
[17] Leray J., “Sur le mouvement d'un liquide visqueux emplissant l'espace”, Acta Mathematica, 63 (1934), 193–248 | DOI | MR | Zbl
[18] Lions J.-L., Équations différentielles opérationelles. Et problèmes aux limites, Springer, Berlin, 1961 | DOI | MR
[19] Lions J.-L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969 | MR
[20] Mitrinović D. S., Pečarić J. E., Fink A. M., Inequalities involving functions and their integrals and derivatives, Kluwer Academic Publishers, Dordrecht, 1991 | DOI | MR | Zbl
[21] Nirenberg L., “On elliptic partial differential equations”, Annali della Scuola Normale Superiore di Pisa — Classe di Scienze, Série 3, 13:2 (1959), 115–162 http://www.numdam.org/item/ASNSP_1959_3_13_2_115_0/ | MR | Zbl
[22] Polkovnikov A., “An open mapping theorem for nonlinear operator equations associated with elliptic complexes”, Applicable Analysis, 2021, 23 pp. | DOI
[23] Prodi G., “Un teorema di unicitá per le equazioni di Navier–Stokes”, Annali di Matematica Pura ed Applicata, 48:1 (1959), 173–182 | DOI | MR | Zbl
[24] Seregin G., Šverák V., “On global weak solutions to the Cauchy problem for the Navier–Stokes equations with large $L_3$-initial data”, Nonlinear Analysis: Theory, Methods and Applications, 154 (2017), 269–296 | DOI | MR | Zbl
[25] Serrin J., “Mathematical principles of classical fluid mechanics”, Fluid Dynamics, v. I, Springer, Berlin, 1959, 125–263 | DOI | MR
[26] Serrin J., “On the interior regularity of weak solutions of the Navie–Stokes equations”, Archive for Rational Mechanics and Analysis, 9:1 (1962), 187–195 | DOI | MR | Zbl
[27] Shlapunov A. A., Tarkhanov N., “An open mapping theorem for the Navier–Stokes type equations associated with the de Rham complex over ${\mathbb R}^n$”, Siberian Electronic Mathematical Reports, 18:2 (2021), 1433–1466 | DOI | MR | Zbl
[28] Smale S., “An infinite dimensional version of Sard's theorem”, American Journal of Mathematics, 87:4 (1965), 861–866 | DOI | MR | Zbl
[29] Temam R., Navier–Stokes equations. Theory and numerical analysis, North Holland, Amsterdam, 1979 | MR | Zbl
[30] Temam R., Navier–Stokes equations and nonlinear functional analysis, SIAM, Philadelphia, 1995 | DOI | MR | Zbl
[31] Tao T., “Finite time blow-up for an averaged three-dimensional Navier–Stokes equation”, Journal of the American Mathematical Society, 29:3 (2015), 601–674 | DOI | MR