Extremality of some Gibbs measures for the Blume-Capel HC-model on a Cayley tree
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 2, pp. 256-277 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we consider translation-invariant Gibbs measures (TIGM) for the Blume–Capel HC-model in the case of a “generalized wand” on a second-order Cayley tree. An approximate critical value of $\theta_{cr}$ is found such that for $\theta \geq\theta_{cr}$ there is only one TIGM, and for $0<\theta<\theta_{cr}$ there are exactly three TIGMs in the case of “generalized wand” for the model under consideration. In addition, the (non)extreme problem for these measures is studied.
Keywords: Cayley tree, Blume–Capel HC-model, Gibbs measure, translation-invariant measures, extreme measure.
Mots-clés : configuration
@article{VUU_2022_32_2_a6,
     author = {N. M. Khatamov},
     title = {Extremality of some {Gibbs} measures for the {Blume-Capel} {HC-model} on a {Cayley} tree},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {256--277},
     year = {2022},
     volume = {32},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_2_a6/}
}
TY  - JOUR
AU  - N. M. Khatamov
TI  - Extremality of some Gibbs measures for the Blume-Capel HC-model on a Cayley tree
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2022
SP  - 256
EP  - 277
VL  - 32
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2022_32_2_a6/
LA  - ru
ID  - VUU_2022_32_2_a6
ER  - 
%0 Journal Article
%A N. M. Khatamov
%T Extremality of some Gibbs measures for the Blume-Capel HC-model on a Cayley tree
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2022
%P 256-277
%V 32
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2022_32_2_a6/
%G ru
%F VUU_2022_32_2_a6
N. M. Khatamov. Extremality of some Gibbs measures for the Blume-Capel HC-model on a Cayley tree. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 2, pp. 256-277. http://geodesic.mathdoc.fr/item/VUU_2022_32_2_a6/

[1] Georgii H.-O., Gibbs measures and phase transitions, De Gruyter, Berlin, 2011 | DOI | MR | Zbl

[2] Preston C. J., Gibbs states on countable sets, Cambridge University Press, Cambridge, 1974 | DOI | MR | Zbl

[3] Sinai Ya. G., Theory of phase transitions. Rigorous results, Pergamon, Oxford, 1982 | DOI | MR | Zbl

[4] Rozikov U. A., Gibbs measures on Cayley trees, World Scientific, 2013 | DOI | MR | Zbl

[5] Mukhamedov F., Akin H., Khakimov O., “Gibbs measures and free energies of Ising–Vannimenus model on the Cayley tree”, Journal of Statistical Mechanics: Theory and Experiment, 2017:5 (2017), 053208 | DOI | MR | Zbl

[6] Akin H., Mukhamedov F., “Phase transition for the Ising model with mixed spins on a Cayley tree”, Journal of Statistical Mechanics: Theory and Experiment, 2022:5 (2022), 053204 | DOI | MR | Zbl

[7] Khatamov N. M., “Nonuniqueness of a Gibbs measure for the Ising ball model”, Theoretical and Mathematical Physics, 180:3 (2014), 1030–1039 | DOI | DOI | MR | Zbl

[8] Rahmatullaev M. M., Rasulova M. A., “Extremality of translation-invariant Gibbs measures for the Potts–SOS model on the Cayley tree”, Journal of Statistical Mechanics: Theory and Experiment, 2021:7 (2021), 073201 | DOI | MR | Zbl

[9] Mukhamedov F. M., Rahmatullaev M. M., Rasulova M. A., “Extremality of translation-invariant Gibbs measures for the $\lambda$-model on the binary Cayley tree”, Theoretical and Mathematical Physics, 210:3 (2022), 411–424 | DOI | DOI | MR

[10] Mukhamedov F., “Extremality of disordered phase of $\lambda$-model on Cayley trees”, Algorithms, 15:1 (2022), 18 | DOI | MR

[11] Khatamov N. M., “Extremity of the Gibbs measures for the HC-Blume–Capel model on the Cayley tree”, Mathematical Notes, 111:5 (2022), 768–781 | DOI | DOI | MR | Zbl

[12] Khrennikov A., Mukhamedov F., “On uniqueness of Gibbs measure for $p$-adic countable state Potts model on the Cayley tree”, Nonlinear Analysis: Theory, Methods and Applications, 71:11 (2009), 5327–5331 | DOI | MR | Zbl

[13] Mukhamedov F., Akin H., “The $p$-adic Potts model on the Cayley tree of order three”, Theoretical and Mathematical Physics, 176:3 (2013), 1267–1279 | DOI | DOI | MR | Zbl

[14] Mukhamedov F., Khakimov O., “Translation-invariant generalized $p$-adic Gibbs measures for the Ising model on Cayley trees”, Mathematical Methods in the Applied Sciences, 44:16 (2021), 12302–12316 | DOI | MR | Zbl

[15] Mukhamedov F., Pah Ch. H., Jamil H., Rahmatullaev M., “On ground states and phase transition for $\lambda$-model with the competing Potts interactions on Cayley trees”, Physica A: Statistical Mechanics and its Applications, 549 (2020), 124184 | DOI | MR | Zbl

[16] Mukhamedov F. M., Rakhmatullaev M. M., Rasulova M. A., “Weakly periodic ground states for the $\lambda$-model”, Ukrainian Mathematical Journal, 72:5 (2020), 771–784 | DOI | MR | Zbl

[17] Khatamov N. M., “New classes of ground states for the Potts model with random competing interactions on a Cayley tree”, Theoretical and Mathematical Physics, 180:1 (2014), 827–834 | DOI | DOI | MR | Zbl

[18] Mazel A. E., Suhov Yu. M., “Random surfaces with two-sided constraints: An application of the theory of dominant ground states”, Journal of Statistical Physics, 64:1–2 (1991), 111–134 | DOI | MR | Zbl

[19] Suhov Yu. M., Rozikov U. A., “A hard-core model on a Cayley tree: An example of a loss network”, Queueing Systems, 46:1–2 (2004), 197–212 | DOI | MR | Zbl

[20] Martin J. B., “Reconstruction thresholds on regular trees”, Discrete Mathematics and Theoretical Computer Science, 2003, 191–204 | DOI | MR | Zbl

[21] Khakimov R. M., “Uniqueness of weakly periodic Gibbs measure for HC-models”, Mathematical Notes, 94:5 (2013), 834–838 | DOI | DOI | MR | Zbl

[22] Khakimov R. M., “Weakly periodic Gibbs measures in the HC-model for a normal divisor of index four”, Ukrainian Mathematical Journal, 67:10 (2015), 1584–1598 | DOI | MR

[23] Khakimov R. M., “Weakly periodic Gibbs measures for HC-models on Cayley trees”, Siberian Mathematical Journal, 59:1 (2018), 147–156 | DOI | DOI | MR | Zbl

[24] Brightwell G. R., Winkler P., “Graph homomorphisms and phase transitions”, Journal of Combinatorial Theory, Series B, 77:2 (1999), 221–262 | DOI | MR | Zbl

[25] Martin J. B., Rozikov U. A., Suhov Yu. M., “A three state hard-core model on a Cayley tree”, Journal of Nonlinear Mathematical Physics, 12:3 (2005), 432–448 | DOI | MR | Zbl

[26] Rozikov U. A., Soyusupov Sh. A., “Fertile HC-models with three states on a Cayley tree”, Theoretical and Mathematical Physics, 156:3 (2008), 1319–1330 | DOI | DOI | MR | Zbl

[27] Khakimov R. M., “Translation-invariant Gibbs measures for fertile three-state “hard core” models on a Cayley tree”, Theoretical and Mathematical Physics, 183:3 (2015), 829–835 | DOI | DOI | MR | Zbl

[28] Rozikov U. A., Khakimov R. M., “Gibbs measures for the fertile three-state hard-core models on a Cayley tree”, Queueing Systems, 81:1 (2015), 49–69 | DOI | MR | Zbl

[29] Cirillo E. N. M., Olivieri E., “Metastability and nucleation for the Blume–Capel model. Different mechanisms of transition”, Journal of Statistical Physics, 83:3–4 (1996), 473–554 | DOI | MR | Zbl

[30] Theodorakis P. E., Fytas N. G., “Monte Carlo study of the triangular Blume–Capel model under bond randomness”, Physical Review E, 86:1 (2012), 011140 | DOI

[31] Kim S., “Metastability of Blume–Capel model with zero chemical potential and zero external field”, Journal of Statistical Physics, 184:3 (2021), 33 | DOI | MR

[32] Khatamov N. M., Khakimov R. M., “Translation-invariant Gibbs measures for the Blume–Capel model on a Cayley tree”, Journal of Mathematical Physics, Analysis, Geometry, 15:2 (2019), 239–255 | DOI | MR | Zbl

[33] Khatamov N. M., “Translation-invariant extreme Gibbs measures for the Blume–Capel model with wand on a Cayley tree”, Ukrainian Mathematical Journal, 72:4 (2020), 623–641 | DOI | MR | Zbl

[34] Khatamov N. M., “Holliday junctions in the Blume–Capel model of DNA”, Theoretical and Mathematical Physics, 206:3 (2021), 383–390 | DOI | DOI | MR | Zbl

[35] Khatamov N. M., “Holliday junctions in the HC Blume–Capel model in “one case” on DNA”, Nanosytems: physics, chemisry, mathematics, 12:5 (2021), 563–568 | DOI | MR

[36] Prasolov V. V., Polynomials, Springer, Berlin, 2004 | DOI | MR | Zbl

[37] Kesten H., Stigum B. P., “Additional limit theorems for indecomposable multidimensional Galton–Watson processes”, The Annals of Mathematical Statistics, 37:6 (1966), 1463–1481 | DOI | MR | Zbl

[38] Martinelli F., Sinclair A., Weitz D., “Fast mixing for independent sets, colorings, and other models on trees”, Random Structures and Algoritms, 31:2 (2007), 134–172 | DOI | MR | Zbl

[39] K{ü}lske C., Rozikov U. A., “Fuzzy transformations and extremality of Gibbs measures for the Potts model on a Cayley tree”, Random Structures and Algoritms, 50:4 (2017), 636–678 | DOI | MR