@article{VUU_2022_32_2_a4,
author = {G. U. Urazboev and M. M. Hasanov},
title = {Integration of the negative order {Korteweg-de} {Vries} equation with a self-consistent source in the class of periodic functions},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {228--239},
year = {2022},
volume = {32},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_2_a4/}
}
TY - JOUR AU - G. U. Urazboev AU - M. M. Hasanov TI - Integration of the negative order Korteweg-de Vries equation with a self-consistent source in the class of periodic functions JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2022 SP - 228 EP - 239 VL - 32 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2022_32_2_a4/ LA - ru ID - VUU_2022_32_2_a4 ER -
%0 Journal Article %A G. U. Urazboev %A M. M. Hasanov %T Integration of the negative order Korteweg-de Vries equation with a self-consistent source in the class of periodic functions %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2022 %P 228-239 %V 32 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2022_32_2_a4/ %G ru %F VUU_2022_32_2_a4
G. U. Urazboev; M. M. Hasanov. Integration of the negative order Korteweg-de Vries equation with a self-consistent source in the class of periodic functions. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 2, pp. 228-239. http://geodesic.mathdoc.fr/item/VUU_2022_32_2_a4/
[1] Gardner C. S., Greene J. M., Kruskal M. D., Miura R. M., “Method for solving the Korteweg–de Vries equation”, Physical Review Letters, 19:19 (1967), 1095–1097 | DOI | MR
[2] Novikov S. P., “The periodic problem for the Korteweg–de Vries equation”, Functional Analysis and Its Applications, 8:3 (1974), 236–246 | DOI | MR | Zbl
[3] Dubrovin B. A., Novikov S. P., “Periodic and conditionally periodic analogs of the many-soliton solutions of the Korteweg–de Vries equation”, Soviet Physics — JETP, 40:6 (1975), 1058–1063 | MR | MR
[4] Marchenko V. A., “The periodic Korteweg–de Vries problem”, Mathematics of the USSR-Sbornik, 24:3 (1974), 319–344 | DOI | MR | Zbl
[5] Dubrovin B. A., “Periodic problems for the Korteweg–de Vries equation in the class of finite band potentials”, Functional Analysis and Its Applications, 9:3 (1975), 215–223 | DOI | MR | Zbl
[6] Its A. R., Matveev V. B., “Schr{ö}dinger operators with finite-gap spectrum and $N$-soliton solutions of the Korteweg–de Vries equation”, Theoretical and Mathematical Physics, 23:1 (1975), 343–355 | DOI | MR
[7] Lax P. D., “Periodic solutions of the KdV equations”, Nonlinear wave motion, AMS, Providence, 1974, 85–96 | MR
[8] Lax P. D., “Periodic solutions of the KdV equation”, Communications on Pure and Applied Mathematics, 28:1 (1975), 141–188 | DOI | MR | Zbl
[9] Mel'nikov V. K., A method for integrating the Korteweg–de Vries equation with a self-consistent source, Preprint No 2-88-11/798, Joint Institute for Nuclear Research, Dubna, 1988
[10] Leon J., Latifi A., “Solution of an initial-boundary value problem for coupled nonlinear waves”, Journal of Physics A: Mathematical and General, 23:8 (1990), 1385–1403 | DOI | MR | Zbl
[11] Urasboev G. U., Khasanov A. B., “Integrating the Korteweg–de Vries equation with a self-consistent source and “steplike” initial data”, Theoretical and Mathematical Physics, 129:1 (2001), 1341–1356 | DOI | DOI | MR | Zbl
[12] Khasanov A. B., Urazboev G. U., “Integration of the general KdV equation with the right hand side in the class of rapidly decreasing functions”, Uzbek Mathematical Journal, 2003, no. 2, 53–59
[13] Khasanov A. B., Yakhshimuratov A. B., “The Korteweg–de Vries equation with a self-consistent source in the class of periodic functions”, Theoretical and Mathematical Physics, 164:2 (2010), 1008–1015 | DOI | DOI | MR | Zbl
[14] Bondarenko N., Freiling G., Urazboev G., “Integration of the matrix KdV equation with self-consistent sources”, Chaos, Solitons and Fractals, 49 (2013), 21–27 | DOI | MR | Zbl
[15] Yakhshimuratov A. B., Khasanov M. M., “Integration of the modified Korteweg–de Vries equation with a self-consistent source in the class of periodic functions”, Differential Equations, 50:4 (2014), 533–540 | DOI | DOI | MR | Zbl
[16] Khasanov A. B., Hoitmetov U. A., “Integration of the general loaded Korteweg–de Vries equation with an integral type source in the class of rapidly decreasing complex-valued functions”, Russian Mathematics, 65:7 (2021), 43–57 | DOI | DOI | MR | Zbl
[17] Hasanov A. B., Hasanov M. M., “Integration of the nonlinear Schr{ö}dinger equation with an additional term in the class of periodic functions”, Theoretical and Mathematical Physics, 199:1 (2019), 525–532 | DOI | DOI | MR | Zbl
[18] Yakhshimuratov A. B., Matyokubov M. M., “Integration of a loaded Korteweg–de Vries equation in a class of periodic functions”, Russian Mathematics, 60:2 (2016), 72–76 | DOI | MR | Zbl
[19] Babadjanova A., Kriecherbauer T., Urazboev G., “The periodic solutions of the discrete modified KdV equation with a self-consistent source”, Applied Mathematics and Computation, 376 (2020), 125136 | DOI | MR | Zbl
[20] Urazboev G. U., Babadjanova A. K., Saparbaeva D. R., “Integration of the Harry Dym equation with an integral type source”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 31:2 (2021), 285–295 | DOI | MR | Zbl
[21] Verosky J. M., “Negative powers of Olver recursion operators”, Journal of Mathematical Physics, 32:7 (1991), 1733–1736 | DOI | MR | Zbl
[22] Lou S., “Symmetries of the KdV equation and four hierarchies of the integrodifferential KdV equations”, Journal of Mathematical Physics, 35:5 (1994), 2390–2396 | DOI | MR | Zbl
[23] Degasperis A., Procesi M., “Asymptotic integrability”, Symmetry and perturbation theory, World Scientific, Singapore, 1999, 23–37 | MR | Zbl
[24] Zhang G., Qiao Z., “Cuspons and smooth solitons of the Degasperis–Procesi equation under inhomogeneous boundary condition”, Mathematical Physics, Analysis and Geometry, 10:3 (2007), 205–225 | DOI | MR | Zbl
[25] Qiao Z., Fan E., “Negative-order Korteweg–de Vries equations”, Physical Review E, 86:1 (2012), 016601 | DOI
[26] Chen J., “Quasi-periodic solutions to a negative-order integrable system of 2-component KdV equation”, International Journal of Geometric Methods in Modern Physics, 15:3 (2018), 1850040 | DOI | MR | Zbl
[27] Qiao Z., Li J., “Negative-order KdV equation with both solitons and kink wave solutions”, Europhysics Letters, 94:5 (2011), 50003 | DOI | MR
[28] Zhao S., Sun Y., “A discrete negative order potential Korteweg–de Vries equation”, Zeitschrift f{ü}r Naturforschung A, 71:12 (2016), 1151–1158 | DOI
[29] Rodriguez M., Li J., Qiao Z., “Negative order KdV equation with no solitary traveling waves”, Mathematics, 10:1 (2022), 48 | DOI
[30] Wazwaz A.-M., “Negative-order KdV equations in (3+1) dimensions by using the KdV recursion operator”, Waves in Random and Complex Media, 27:4 (2017), 768–778 | DOI | MR
[31] Kuznetsova M., “Necessary and sufficient conditions for the spectra of the Sturm–Liouville operators with frozen argument”, Applied Mathematics Letters, 131 (2022), 108035 | DOI | MR | Zbl
[32] Titchmarsh E. C., Eigenfunction expansions associated with second-order differential equations, v. 2, London, 1958 | MR | Zbl
[33] Magnus W., Winkler W., Hill's equation, Interscience Publishers, New York, 1966 | MR
[34] Stankevich I. V., “A certain inverse spectral analysis problem for Hill's equation”, Doklady Akademii Nauk SSSR, 192:1 (1970), 34–37 | Zbl
[35] Marchenko V. A., Ostrovskii I. V., “A characterization of the spectrum of Hill's operator”, Mathematics of the USSR-Sbornik, 26:4 (1975), 493–554 | DOI | MR | Zbl
[36] Trubowitz E., “The inverse problem for periodic potentials”, Communications on Pure and Applied Mathematics, 30:3 (1977), 321–337 | DOI | MR | Zbl
[37] Levitan B. M., Sargsyan I. S., Sturm–Liouville and Dirac operators, Nauka, M., 1988 | MR