Mots-clés : Bellman equation
@article{VUU_2022_32_2_a1,
author = {M. I. Gusev and I. O. Osipov},
title = {On a local synthesis problem for nonlinear systems with integral constraints},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {171--186},
year = {2022},
volume = {32},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_2_a1/}
}
TY - JOUR AU - M. I. Gusev AU - I. O. Osipov TI - On a local synthesis problem for nonlinear systems with integral constraints JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2022 SP - 171 EP - 186 VL - 32 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2022_32_2_a1/ LA - ru ID - VUU_2022_32_2_a1 ER -
%0 Journal Article %A M. I. Gusev %A I. O. Osipov %T On a local synthesis problem for nonlinear systems with integral constraints %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2022 %P 171-186 %V 32 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2022_32_2_a1/ %G ru %F VUU_2022_32_2_a1
M. I. Gusev; I. O. Osipov. On a local synthesis problem for nonlinear systems with integral constraints. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 2, pp. 171-186. http://geodesic.mathdoc.fr/item/VUU_2022_32_2_a1/
[1] Krasovskii N. N., “Editor's addendum to the book of Malkin I. G., Theory of motion stability”, Problems of stabilizing controlled movements, Nauka, M., 1966, 475–514
[2] Al'brekht E. G., Shelement'ev G. S., Lectures on stabilization theory, Ural State University, Sverdlovsk, 1972
[3] Khalil H. K., Nonlinear systems, Pearson, 2002
[4] Polyak B. T., Khlebnikov M. V., Rapoport L. B., Mathematical theory of automatic control, LENAND, M., 2019
[5] Zykov I. V., “On external estimates of reachable sets of control systems with integral constraints”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 53 (2019), 61–72 (in Russian) | DOI | Zbl
[6] Gusev M. I., Zykov I. V., “On extremal properties of the boundary points of reachable sets for control systems with integral constraints”, Proceedings of the Steklov Institute of Mathematics, 300, suppl. 1 (2018), 114–125 | DOI | DOI | MR
[7] Atans M., Falb P., Optimal control, McGraw-Hill, New York, 1966 | MR
[8] Pervozvanskii A. A., Course in automatic control theory, Nauka, M., 1986
[9] Abgaryan K. A., Matrix calculus with applications in the theory of dynamical systems, Fizmatlit, M., 1994
[10] Kurzhanski A. B., Varaiya P., Dynamics and control of trajectory tubes. Theory and computation, Birkhäuser, Cham, 2014 | DOI | MR | Zbl
[11] Gusev M. I., “On convexity of reachable sets of a nonlinear system under integral constraints”, IFAC-PapersOnLine, 51:32 (2018), 207–212 | DOI
[12] Osipov I. O., “On the convexity of the reachable set with respect to a part of coordinates at small time intervals”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternue Nauki, 31:2 (2021), 210–225 | DOI | MR | Zbl
[13] Gusev M. I., Osipov I. O., “Asymptotic behavior of reachable sets on small time intervals”, Proceedings of the Steklov Institute of Mathematics, 309 (2020), 52–64 | DOI | DOI | MR
[14] Gusev M. I., “Estimates of the minimal eigenvalue of the controllability Gramian for a system containing a small parameter”, Mathematical Optimization Theory and Operations Research, Springer, Cham, 2019, 461–473 | DOI | MR | Zbl
[15] Krener A., Sch{ä}ttler H., “The structure of small-time reachable sets in low dimensions”, SIAM Journal on Control and Optimization, 27:1 (1989), 120–147 | DOI | MR | Zbl
[16] Sch{ä}ttler H., “Small-time reachable sets and time-optimal feedback control”, Nonsmooth Analysis and Geometric Methods in Deterministic Optimal Control, Springer, New York, 1996, 203–225 | DOI | Zbl
[17] Walter W., Differential and integral inequalities, Springer, Berlin, 1970 | MR | Zbl