On a local synthesis problem for nonlinear systems with integral constraints
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 2, pp. 171-186 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers the problem of leading a nonlinear control system to the origin of coordinates at a given integral control resource on a finite time interval. We investigate the question of the construction of local control synthesis that solves the problem, assuming that the time interval during which the system is moved is sufficiently small. We indicate sufficient conditions under which the problem can be solved by the approximate replacement of the nonlinear system by its linearization in the neighborhood of the origin.
Keywords: nonlinear system, controllability set, integral constraints, linearization, local synthesis, small-time, asymptotics.
Mots-clés : Bellman equation
@article{VUU_2022_32_2_a1,
     author = {M. I. Gusev and I. O. Osipov},
     title = {On a local synthesis problem for nonlinear systems with integral constraints},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {171--186},
     year = {2022},
     volume = {32},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_2_a1/}
}
TY  - JOUR
AU  - M. I. Gusev
AU  - I. O. Osipov
TI  - On a local synthesis problem for nonlinear systems with integral constraints
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2022
SP  - 171
EP  - 186
VL  - 32
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2022_32_2_a1/
LA  - ru
ID  - VUU_2022_32_2_a1
ER  - 
%0 Journal Article
%A M. I. Gusev
%A I. O. Osipov
%T On a local synthesis problem for nonlinear systems with integral constraints
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2022
%P 171-186
%V 32
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2022_32_2_a1/
%G ru
%F VUU_2022_32_2_a1
M. I. Gusev; I. O. Osipov. On a local synthesis problem for nonlinear systems with integral constraints. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 2, pp. 171-186. http://geodesic.mathdoc.fr/item/VUU_2022_32_2_a1/

[1] Krasovskii N. N., “Editor's addendum to the book of Malkin I. G., Theory of motion stability”, Problems of stabilizing controlled movements, Nauka, M., 1966, 475–514

[2] Al'brekht E. G., Shelement'ev G. S., Lectures on stabilization theory, Ural State University, Sverdlovsk, 1972

[3] Khalil H. K., Nonlinear systems, Pearson, 2002

[4] Polyak B. T., Khlebnikov M. V., Rapoport L. B., Mathematical theory of automatic control, LENAND, M., 2019

[5] Zykov I. V., “On external estimates of reachable sets of control systems with integral constraints”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 53 (2019), 61–72 (in Russian) | DOI | Zbl

[6] Gusev M. I., Zykov I. V., “On extremal properties of the boundary points of reachable sets for control systems with integral constraints”, Proceedings of the Steklov Institute of Mathematics, 300, suppl. 1 (2018), 114–125 | DOI | DOI | MR

[7] Atans M., Falb P., Optimal control, McGraw-Hill, New York, 1966 | MR

[8] Pervozvanskii A. A., Course in automatic control theory, Nauka, M., 1986

[9] Abgaryan K. A., Matrix calculus with applications in the theory of dynamical systems, Fizmatlit, M., 1994

[10] Kurzhanski A. B., Varaiya P., Dynamics and control of trajectory tubes. Theory and computation, Birkhäuser, Cham, 2014 | DOI | MR | Zbl

[11] Gusev M. I., “On convexity of reachable sets of a nonlinear system under integral constraints”, IFAC-PapersOnLine, 51:32 (2018), 207–212 | DOI

[12] Osipov I. O., “On the convexity of the reachable set with respect to a part of coordinates at small time intervals”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternue Nauki, 31:2 (2021), 210–225 | DOI | MR | Zbl

[13] Gusev M. I., Osipov I. O., “Asymptotic behavior of reachable sets on small time intervals”, Proceedings of the Steklov Institute of Mathematics, 309 (2020), 52–64 | DOI | DOI | MR

[14] Gusev M. I., “Estimates of the minimal eigenvalue of the controllability Gramian for a system containing a small parameter”, Mathematical Optimization Theory and Operations Research, Springer, Cham, 2019, 461–473 | DOI | MR | Zbl

[15] Krener A., Sch{ä}ttler H., “The structure of small-time reachable sets in low dimensions”, SIAM Journal on Control and Optimization, 27:1 (1989), 120–147 | DOI | MR | Zbl

[16] Sch{ä}ttler H., “Small-time reachable sets and time-optimal feedback control”, Nonsmooth Analysis and Geometric Methods in Deterministic Optimal Control, Springer, New York, 1996, 203–225 | DOI | Zbl

[17] Walter W., Differential and integral inequalities, Springer, Berlin, 1970 | MR | Zbl