Integration of the Kaup-Boussinesq system with a self-consistent source via inverse scattering method
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 2, pp. 153-170 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this study we consider the Kaup–Boussinesq system with a self-consistent source. We show that the Kaup–Boussinesq system with a self-consistent source can be integrated by the method of inverse scattering theory. For a solving the problem under consideration, we use the direct and inverse scattering problem of the Sturm–Liouville equation with an energy-dependent potential. The time evolution of the scattering data for the Sturm–Liouville equation with an energy-dependent potentials associated with the solution of the Kaup–Boussinesq system with a self-consistent source is determined. The obtained equalities completely determine the scattering data for any $t$, which makes it possible to apply the method of the inverse scattering problem to solve the Cauchy problem for the Kaup–Boussinesq system with a self-consistent source.
Keywords: nonlinear soliton equation, self-consistent source, inverse scattering method, quadratic pencil of Sturm–Liouville equations.
Mots-clés : Kaup–Boussinesq system
@article{VUU_2022_32_2_a0,
     author = {B. A. Babajanov and A. Sh. Azamatov},
     title = {Integration of the {Kaup-Boussinesq} system with a self-consistent source via inverse scattering method},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {153--170},
     year = {2022},
     volume = {32},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_2_a0/}
}
TY  - JOUR
AU  - B. A. Babajanov
AU  - A. Sh. Azamatov
TI  - Integration of the Kaup-Boussinesq system with a self-consistent source via inverse scattering method
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2022
SP  - 153
EP  - 170
VL  - 32
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2022_32_2_a0/
LA  - en
ID  - VUU_2022_32_2_a0
ER  - 
%0 Journal Article
%A B. A. Babajanov
%A A. Sh. Azamatov
%T Integration of the Kaup-Boussinesq system with a self-consistent source via inverse scattering method
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2022
%P 153-170
%V 32
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2022_32_2_a0/
%G en
%F VUU_2022_32_2_a0
B. A. Babajanov; A. Sh. Azamatov. Integration of the Kaup-Boussinesq system with a self-consistent source via inverse scattering method. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 2, pp. 153-170. http://geodesic.mathdoc.fr/item/VUU_2022_32_2_a0/

[1] Boussinesq J., “Théorie de l'intumescence liquide appelée onde solitaire ou de translation, se propageant dans un canal rectangulaire”, Comptes rendus hebdomadaires des séances de l'Académie des Sciences, 72 (1871), 755–759

[2] Kaup D. J., “A higher-order water-wave equation and the method for solving it”, Progress of Theoretical Physics, 54:2 (1975), 396–408 | DOI | MR | Zbl

[3] Matveev V. B., Yavor M. I., “Solutions presque périodiques et a N-solitons de l'equation hydrodynamique non linéaire de Kaup”, Annales de l'I. H. P. Physique théorique, 31:1 (1979), 25–41 http://eudml.org/doc/76040 | MR | Zbl

[4] Smirnov A. O., “Real finite-gap regular solutions of the Kaup–Boussinesq equation”, Theoretical and Mathematical Physics, 66:1 (1986), 19–31 | DOI | MR | Zbl

[5] Mitropol'skii Yu. A., Bogolyubov N. N. (Jr.), Prikarpatskii A. K., Samoilenko V. G., Integrable dynamical system: spectral and differential-geometric aspects, Naukova dumka, Kiev, 1987

[6] Jaulent M., Miodek I., “Nonlinear evolution equation associated with ‘energy-dependent Schrödinger potentials’”, Letters in Mathematical Physics, 1:3 (1976), 243–250 | DOI | MR | Zbl

[7] Sattinger D. H., Szmigielski J., “Energy dependent scattering theory”, Differential and Integral Equations, 8:5 (1995), 945–959 | MR | Zbl

[8] Ivanov R., Lyons T., “Integrable models for shallow water with energy dependent spectral problems”, Journal of Nonlinear Mathematical Physics, 19 (2012), 72–88 | DOI | MR | Zbl

[9] Haberlin J., Lyons T., “Solitons of shallow-water models from energy-dependent spectral problems”, The European Physical Journal Plus, 133 (2018), 16 | DOI

[10] Wazwaz A.-M., “The generalized Kaup–Boussinesq equation: multiple soliton solutions”, Waves in Random and Complex Media, 25:4 (2015), 473–481 | DOI | MR | Zbl

[11] Chen Ch., Jiang Y.-L., “Invariant solutions and conservation laws of the generalized Kaup–Boussinesq equation”, Waves in Random and Complex Media, 29:1 (2019), 138–152 | DOI | MR | Zbl

[12] Li W.-H., Wang Y., “Exact dynamical behavior for a dual Kaup–Boussinesq system by symmetry reduction and coupled trial equations method”, Advances in Difference Equations, 2019 (2019), 451 | DOI | MR

[13] Hosseini K., Ansari R., Gholamin P., “Exact solutions of some nonlinear systems of partial differential equations by using the first integral method”, Journal of Mathematical Analysis and Applications, 387:2 (2012), 807–814 | DOI | MR | Zbl

[14] Zhou J., Tian L., Fan X., “Solitary-wave solutions to a dual equation of the Kaup–Boussinesq system”, Nonlinear Analysis: Real World Applications, 11:4 (2010), 3229–3235 | DOI | MR | Zbl

[15] Mel'nikov V. K., “Integration method of the Korteweg–de Vries equation with a self-consistent source”, Physics Letters A, 133:9 (1988), 493–496 | DOI | MR

[16] Mel'nikov V. K., “Integration of the Korteweg–de Vries equation with a source”, Inverse Problems, 6:2 (1990), 233–246 | DOI | MR

[17] Leon J., Latifi A., “Solution of an initial-boundary value problem for coupled nonlinear waves”, Journal of Physics A: Mathematical and General, 23:8 (1990), 1385–1403 | DOI | MR | Zbl

[18] Claude C., Latifi A., Leon J., “Nonlinear resonant scattering and plasma instability: an integrable model”, Journal of Mathematical Physics, 32:12 (1991), 3321–3330 | DOI | MR | Zbl

[19] Mel'nikov V. K., “Integration of the nonlinear Schrödinger equation with a self-consistent source”, Communications in Mathematical Physics, 137:2 (1991), 359–381 | DOI | MR

[20] Gerdjikov V. S., Grahovski G., Ivanov R., “On the integrability of KdV hierarchy with self-consistent sources”, Communications on Pure and Applied Analysis, 11:4 (2012), 1439–1452 | DOI | MR | Zbl

[21] Li Q., Zhang J. B., Chen D. Y., “The eigenfunctions and exact solutions of discrete mKdV hierarchy with self-consistent sources via the inverse scattering transform”, Advances in Applied Mathematics and Mechanics, 7:5 (2015), 663–674 | DOI | MR | Zbl

[22] Bondarenko N., Freiling G., Urazboev G., “Integration of the matrix KdV equation with self-consistent sources”, Chaos, Solitons and Fractals, 49 (2013), 21–27 | DOI | MR | Zbl

[23] Babadjanova A., Kriecherbauer T., Urazboev G., “The periodic solutions of the discrete modified KdV equation with a self-consistent source”, Applied Mathematics and Computation, 376 (2020), 125136 | DOI | MR | Zbl

[24] Urazboev G. U., Babadjanova A. K., Saparbaeva D. R., “Integration of the Harry Dym equation with an integral type source”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 31:2 (2021), 285–295 | DOI | MR | Zbl

[25] Grinevich P. G., Taimanov I. A., “Spectral conservation laws for periodic nonlinear equations of the Melnikov type”, Geometry, Topology, and Mathematical Physics: S. P. Novikov's Seminar: 2006–2007, AMS, 2008, 125–138 | DOI | MR | Zbl

[26] Urazboev G., Babadjanova A., “On the integration of the matrix modified Korteweg–de Vries equation with self-consistent source”, Tamkang Journal of Mathematics, 50:3 (2019), 281–291 | DOI | MR | Zbl

[27] Yakhshimuratov A., “The nonlinear Schrödinger equation with a self-consistent source in the class of periodic functions”, Mathematical Physics, Analysis and Geometry, 14:2 (2011), 153–169 | DOI | MR | Zbl

[28] Babajanov B., Fečkan M., Urazbaev G., “On the periodic Toda lattice hierarchy with an integral source”, Communications in Nonlinear Science and Numerical Simulation, 52 (2017), 110–123 | DOI | MR | Zbl

[29] Babajanov B. A., Khasanov A. B., “Periodic Toda chain with an integral source”, Theoretical and Mathematical Physics, 184:2 (2015), 1114–1128 | DOI | DOI | MR | Zbl

[30] Huang Y., Zeng Y., Ragnisco O., “The Degasperis–Procesi equation with self-consistent sources”, Journal of Physics A: Mathematical and Theoretical, 41:35 (2008), 355203 | DOI | MR | Zbl

[31] Zeng Y.-B., Ma W.-X., Shao Y.-J., “Two binary Darboux transformations for the KdV hierarchy with self-consistent sources”, Journal of Mathematical Physics, 42:5 (2001), 2113–2128 | DOI | MR | Zbl

[32] Zeng Y.-B., Shao Y.-J., Ma W.-X., “Integral-type Darboux transformations for the mKdV hierarchy with self-consistent sources”, Communications in Theoretical Physics, 38:6 (2002), 641–648 | DOI | MR | Zbl

[33] Zeng Y.-B., Shao Y.-J., Xue W.-M., “Positon solutions of the KdV equation with self-consistent sources”, Theoretical and Mathematical Physics, 137:2 (2003), 1622–1631 | DOI | MR | Zbl

[34] Xiao T., Zeng Y.-B., “Generalized Darboux transformations for the KP equation with self-consistent sources”, Journal of Physics A: Mathematical and General, 37:28 (2004), 7143–7162 | DOI | MR | Zbl

[35] Gegenhasi, Xiaorong Bai, “On the modified discrete KP equation with self-consistent sources”, Journal of Nonlinear Mathematical Physics, 24:2 (2017), 224–238 | DOI | MR | Zbl

[36] Zhang D., “The $N$-soliton solutions of some soliton equations with self-consistent sources”, Chaos, Solitons and Fractals, 18:1 (2003), 31–43 | DOI | MR | Zbl

[37] Matsuno Y., “Bilinear Backlund transformation for the KdV equation with a source”, Journal of Physics A: Mathematical and General, 24:6 (1991), 273–277 | DOI | MR

[38] Deng S.-F., Chen D.-Y., Zhang D.-J., “The multisoliton solutions of the KP equation with self-consistent sources”, Journal of the Physical Society of Japan, 72:9 (2003), 2184–2192 | DOI | MR | Zbl

[39] Zhang D.-J., Chen D.-Y., “The $N$-soliton solutions of the sine-Gordon equation with self-consistent sources”, Physica A: Statistical Mechanics and its Applications, 321:3–4 (2003), 467–481 | DOI | MR | Zbl

[40] Cabada A., Yakhshimuratov A., “The system of Kaup equations with a self-consistent source in the class of periodic functions”, Journal of Mathematical Physics, Analysis, Geometry, 9:3 (2013), 287–303 | MR | Zbl

[41] Yakhshimuratov A., Kriecherbauer T., Babajanov B., “On the construction and integration of a hierarchy for the Kaup system with a self-consistent source in the class of periodic functions”, Journal of Mathematical Physics, Analysis, Geometry, 17:2 (2021), 233–257 | DOI | MR | Zbl

[42] Jaulent M., “On an inverse scattering problem with an energy-dependent potential”, Annales de l'I. H. P. Physique théorique, 17:4 (1972), 363–378 http://eudml.org/doc/75763 | MR

[43] Jaulent M., Jean C., “The inverse problem for the one-dimensional Schrödinger operator with an energy-dependent potential. I”, Annales de l'I. H. P. Physique théorique, 25:2 (1976), 105–118 http://eudml.org/doc/75912 | MR | Zbl

[44] Jaulent M., Jean C., “The inverse problem for the one-dimensional Schrödinger operator with an energy-dependent potential. II”, Annales de l'I. H. P. Physique théorique, 25:2 (1976), 119–137 http://eudml.org/doc/75913 | MR | Zbl

[45] Maksudov F. G., Gusejnov G. Sh., “On solution of the inverse scattering problem for a quadratic pencil of one-dimensional Schrödinger operators on the whole axis”, Sov. Math., Dokl., 34 (1986), 34–38 | MR | Zbl

[46] Laptev A., Shterenberg R., Sukhanov V., “Inverse spectral problems for Schrödinger operators with energy depending potentials”, Probability and Mathematical Physics, A Volume in Honor of Stanislav Molchanov, AMS, 2007, 341–351 | DOI | MR | Zbl

[47] Aktosun T., Klaus M., van der Mee C., “Wave scattering in one dimension with absorption”, Journal of Mathematical Physics, 39:4 (1998), 1957–1992 | DOI | MR | Zbl

[48] Babazhanov B. A., Khasanov A. B., “Inverse problem for a quadratic pencil of Sturm–Liouville operators with finite-gap periodic potential on the half-line”, Differential Equations, 43:6 (2007), 737–744 | DOI | MR | Zbl

[49] Babadzhanov B. A., Khasanov A. B., Yakhshimuratov A. B., “On the inverse problem for a quadratic pencil of Sturm–Liouville operators with periodic potential”, Differential Equations, 41:3 (2005), 310–318 | DOI | MR | Zbl