On totally global solvability of evolutionary equation with monotone nonlinear operator
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 1, pp. 130-149 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $V$ be a separable reflexive Banach space being embedded continuously in a Hilbert space $H$ and dense in it; $X=L_p(0,T;V)\cap L_{p_0}(0,T;H)$; $U$ be a given set of controls; $A\colon X\to X^*$ be a given Volterra operator which is radially continuous, monotone and coercive (and, generally speaking, nonlinear). For the Cauchy problem associated with controlled evolutionary equation as follows $$x^\prime+Ax=f[u](x), x(0)=a\in H; x\in W=\{x\in X\colon x^\prime\in X^*\},$$ where $u\in U$ is a control, $f[u]\colon \mathbf{C}(0,T;H)\to X^*$ is Volterra operator ($W\subset\mathbf{C}(0,T;H)$), we prove totally (with respect to a set of admissible controls) global solvability subject to global solvability of some functional integral inequality in the space $\mathbb{R}$. In many particular cases the above inequality may be realized as the Cauchy problem associated with an ordinary differential equation. In fact, a similar result proved by the author earlier for the case of linear operator $A$ and identity $V=H=V^*$ is developed. Separately, we consider the cases of compact embedding of spaces, strengthening of the monotonicity condition and coincidence of the triplet of spaces $V=H=H^*$. As to the last two cases, we prove also the uniqueness of the solution. In the first case we use Schauder theorem and in the last two cases we apply the technique of continuation of solution along with the time axis (i. e., continuation along with a Volterra chain). Finally, we give some examples of an operator $A$ satisfying our conditions.
Keywords: strongly nonlinear evolutionary equation in a Banach space, monotone nonlinear operator, totally global solvability.
@article{VUU_2022_32_1_a8,
     author = {A. V. Chernov},
     title = {On totally global solvability of evolutionary equation with monotone nonlinear operator},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {130--149},
     year = {2022},
     volume = {32},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_1_a8/}
}
TY  - JOUR
AU  - A. V. Chernov
TI  - On totally global solvability of evolutionary equation with monotone nonlinear operator
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2022
SP  - 130
EP  - 149
VL  - 32
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2022_32_1_a8/
LA  - ru
ID  - VUU_2022_32_1_a8
ER  - 
%0 Journal Article
%A A. V. Chernov
%T On totally global solvability of evolutionary equation with monotone nonlinear operator
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2022
%P 130-149
%V 32
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2022_32_1_a8/
%G ru
%F VUU_2022_32_1_a8
A. V. Chernov. On totally global solvability of evolutionary equation with monotone nonlinear operator. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 1, pp. 130-149. http://geodesic.mathdoc.fr/item/VUU_2022_32_1_a8/

[1] Chernov A. V., “On total preservation of solvability of controlled Hammerstein-type equation with non-isotone and non-majorizable operator”, Russian Mathematics, 61:6 (2017), 72–81 | DOI | MR | Zbl

[2] Chernov A. V., “A majorant criterion for the total preservation of global solvability of controlled functional operator equation”, Russian Mathematics, 55:3 (2011), 85–95 | DOI | MR | MR | Zbl

[3] Kalantarov V. K., Ladyzhenskaya O. A., “The occurrence of collapse for quasilinear equations of parabolic and hyperbolic types”, Journal of Soviet Mathematics, 10:1 (1978), 53–70 | DOI | MR | Zbl

[4] Sumin V. I., “The features of gradient methods for distributed optimal-control problems”, USSR Computational Mathematics and Mathematical Physics, 30:1 (1990), 1–15 | DOI | MR | Zbl

[5] Sumin V. I., Functional Volterra equations in the theory of optimal control of distributed systems, v. I, N. I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 1992

[6] Lions J.-L., Contr{ô}le des systèmes distribués singuliers, Gauthier-Villars, Paris, 1983 | MR | Zbl

[7] Fursikov A. V., Optimal control of distributed systems. Theory and applications, American Mathematical Society, Providence, RI, 2000 | MR | Zbl

[8] Plotnikov V. I., Sumin V. I., “Optimization of distributed systems in Lebesgue space”, Siberian Mathematical Journal, 22:6 (1981), 913–929 | DOI | MR | Zbl

[9] Chernov A. V., “On the convergence of the conditional gradient method in distributed optimization problems”, Computational Mathematics and Mathematical Physics, 51:9 (2011), 1510–1523 | DOI | MR | Zbl

[10] Gajewski H., Gr{ö}ger K., Zacharias K., Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974 | MR | Zbl

[11] Lions J.-L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969 | MR | Zbl

[12] Kobayashi T., Pecher H., Shibata Y., “On a global in time existence theorem of smooth solutions to a nonlinear wave equation with viscosity”, Mathematische Annalen, 296:1 (1993), 215–234 | DOI | MR | Zbl

[13] Lu G., “Global existence and blow-up for a class of semilinear parabolic systems: a Cauchy problem”, Nonlinear Analysis: Theory, Methods and Applications, 24:8 (1995), 1193–1206 | DOI | MR | Zbl

[14] Cavalcanti M. M., Domingos Cavalcanti V. N., Soriano J. A., “On existence and asymptotic stability of solutions of the degenerate wave equation with nonlinear boundary conditions”, Journal of Mathematical Analysis and Applications, 281:1 (2003), 108–124 | DOI | MR | Zbl

[15] Saito H., “Global solvability of the Navier–Stokes equations with a free surface in the maximal $L_p$-$L_q$ regularity class”, Journal of Differential Equations, 264:3 (2018), 1475–1520 | DOI | MR | Zbl

[16] Chernov A. V., “On totally global solvability of evolutionary equation with unbounded operator”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 31:2 (2021), 331–349 (in Russian) | DOI | MR | Zbl

[17] Zeidler E., Nonlinear functional analysis and its applications. II/B: Nonlinear monotone operators, Springer, New York, 1990 | MR | Zbl

[18] Vulikh B. Z., Kurzer Lehrgang der Theorie der Funktionen einer reellen Ver{ä}nderlichen, Nauka, M., 1965 | Zbl

[19] Kantorovich L. V., Akilov G. P., Functional analysis, Pergamon Press, Oxford, 1982 | MR | MR | Zbl

[20] Sobolev S. L., Some applications of functional analysis in mathematical physics, American Mathematical Society, Providence, RI, 1991 | MR | MR | Zbl

[21] Pavlova M. F., Timerbaev M. R., Sobolev spaces (embedding theorems), Kazan Federal University, Kazan, 2010