@article{VUU_2022_32_1_a8,
author = {A. V. Chernov},
title = {On totally global solvability of evolutionary equation with monotone nonlinear operator},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {130--149},
year = {2022},
volume = {32},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_1_a8/}
}
TY - JOUR AU - A. V. Chernov TI - On totally global solvability of evolutionary equation with monotone nonlinear operator JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2022 SP - 130 EP - 149 VL - 32 IS - 1 UR - http://geodesic.mathdoc.fr/item/VUU_2022_32_1_a8/ LA - ru ID - VUU_2022_32_1_a8 ER -
%0 Journal Article %A A. V. Chernov %T On totally global solvability of evolutionary equation with monotone nonlinear operator %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2022 %P 130-149 %V 32 %N 1 %U http://geodesic.mathdoc.fr/item/VUU_2022_32_1_a8/ %G ru %F VUU_2022_32_1_a8
A. V. Chernov. On totally global solvability of evolutionary equation with monotone nonlinear operator. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 1, pp. 130-149. http://geodesic.mathdoc.fr/item/VUU_2022_32_1_a8/
[1] Chernov A. V., “On total preservation of solvability of controlled Hammerstein-type equation with non-isotone and non-majorizable operator”, Russian Mathematics, 61:6 (2017), 72–81 | DOI | MR | Zbl
[2] Chernov A. V., “A majorant criterion for the total preservation of global solvability of controlled functional operator equation”, Russian Mathematics, 55:3 (2011), 85–95 | DOI | MR | MR | Zbl
[3] Kalantarov V. K., Ladyzhenskaya O. A., “The occurrence of collapse for quasilinear equations of parabolic and hyperbolic types”, Journal of Soviet Mathematics, 10:1 (1978), 53–70 | DOI | MR | Zbl
[4] Sumin V. I., “The features of gradient methods for distributed optimal-control problems”, USSR Computational Mathematics and Mathematical Physics, 30:1 (1990), 1–15 | DOI | MR | Zbl
[5] Sumin V. I., Functional Volterra equations in the theory of optimal control of distributed systems, v. I, N. I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 1992
[6] Lions J.-L., Contr{ô}le des systèmes distribués singuliers, Gauthier-Villars, Paris, 1983 | MR | Zbl
[7] Fursikov A. V., Optimal control of distributed systems. Theory and applications, American Mathematical Society, Providence, RI, 2000 | MR | Zbl
[8] Plotnikov V. I., Sumin V. I., “Optimization of distributed systems in Lebesgue space”, Siberian Mathematical Journal, 22:6 (1981), 913–929 | DOI | MR | Zbl
[9] Chernov A. V., “On the convergence of the conditional gradient method in distributed optimization problems”, Computational Mathematics and Mathematical Physics, 51:9 (2011), 1510–1523 | DOI | MR | Zbl
[10] Gajewski H., Gr{ö}ger K., Zacharias K., Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974 | MR | Zbl
[11] Lions J.-L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969 | MR | Zbl
[12] Kobayashi T., Pecher H., Shibata Y., “On a global in time existence theorem of smooth solutions to a nonlinear wave equation with viscosity”, Mathematische Annalen, 296:1 (1993), 215–234 | DOI | MR | Zbl
[13] Lu G., “Global existence and blow-up for a class of semilinear parabolic systems: a Cauchy problem”, Nonlinear Analysis: Theory, Methods and Applications, 24:8 (1995), 1193–1206 | DOI | MR | Zbl
[14] Cavalcanti M. M., Domingos Cavalcanti V. N., Soriano J. A., “On existence and asymptotic stability of solutions of the degenerate wave equation with nonlinear boundary conditions”, Journal of Mathematical Analysis and Applications, 281:1 (2003), 108–124 | DOI | MR | Zbl
[15] Saito H., “Global solvability of the Navier–Stokes equations with a free surface in the maximal $L_p$-$L_q$ regularity class”, Journal of Differential Equations, 264:3 (2018), 1475–1520 | DOI | MR | Zbl
[16] Chernov A. V., “On totally global solvability of evolutionary equation with unbounded operator”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 31:2 (2021), 331–349 (in Russian) | DOI | MR | Zbl
[17] Zeidler E., Nonlinear functional analysis and its applications. II/B: Nonlinear monotone operators, Springer, New York, 1990 | MR | Zbl
[18] Vulikh B. Z., Kurzer Lehrgang der Theorie der Funktionen einer reellen Ver{ä}nderlichen, Nauka, M., 1965 | Zbl
[19] Kantorovich L. V., Akilov G. P., Functional analysis, Pergamon Press, Oxford, 1982 | MR | MR | Zbl
[20] Sobolev S. L., Some applications of functional analysis in mathematical physics, American Mathematical Society, Providence, RI, 1991 | MR | MR | Zbl
[21] Pavlova M. F., Timerbaev M. R., Sobolev spaces (embedding theorems), Kazan Federal University, Kazan, 2010