On totally global solvability of evolutionary equation with monotone nonlinear operator
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 1, pp. 130-149
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $V$ be a separable reflexive Banach space being embedded continuously in a Hilbert space $H$ and dense in it; $X=L_p(0,T;V)\cap L_{p_0}(0,T;H)$; $U$ be a given set of controls; $A\colon X\to X^*$ be a given Volterra operator which is radially continuous, monotone and coercive (and, generally speaking, nonlinear). For the Cauchy problem associated with controlled evolutionary equation as follows $$x^\prime+Ax=f[u](x), x(0)=a\in H; x\in W=\{x\in X\colon x^\prime\in X^*\},$$ where $u\in U$ is a control, $f[u]\colon \mathbf{C}(0,T;H)\to X^*$ is Volterra operator ($W\subset\mathbf{C}(0,T;H)$), we prove totally (with respect to a set of admissible controls) global solvability subject to global solvability of some functional integral inequality in the space $\mathbb{R}$. In many particular cases the above inequality may be realized as the Cauchy problem associated with an ordinary differential equation. In fact, a similar result proved by the author earlier for the case of linear operator $A$ and identity $V=H=V^*$ is developed. Separately, we consider the cases of compact embedding of spaces, strengthening of the monotonicity condition and coincidence of the triplet of spaces $V=H=H^*$. As to the last two cases, we prove also the uniqueness of the solution. In the first case we use Schauder theorem and in the last two cases we apply the technique of continuation of solution along with the time axis (i. e., continuation along with a Volterra chain). Finally, we give some examples of an operator $A$ satisfying our conditions.
Keywords:
strongly nonlinear evolutionary equation in a Banach space, monotone nonlinear operator, totally global solvability.
@article{VUU_2022_32_1_a8,
author = {A. V. Chernov},
title = {On totally global solvability of evolutionary equation with monotone nonlinear operator},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {130--149},
publisher = {mathdoc},
volume = {32},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_1_a8/}
}
TY - JOUR AU - A. V. Chernov TI - On totally global solvability of evolutionary equation with monotone nonlinear operator JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2022 SP - 130 EP - 149 VL - 32 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2022_32_1_a8/ LA - ru ID - VUU_2022_32_1_a8 ER -
%0 Journal Article %A A. V. Chernov %T On totally global solvability of evolutionary equation with monotone nonlinear operator %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2022 %P 130-149 %V 32 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2022_32_1_a8/ %G ru %F VUU_2022_32_1_a8
A. V. Chernov. On totally global solvability of evolutionary equation with monotone nonlinear operator. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 1, pp. 130-149. http://geodesic.mathdoc.fr/item/VUU_2022_32_1_a8/