Mots-clés : Legendre polynomials.
@article{VUU_2022_32_1_a7,
author = {I. S. Polyanskii and K. O. Loginov},
title = {Approximate method for solving the problem of conformal mapping of an arbitrary polygon to a unit circle},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {107--129},
year = {2022},
volume = {32},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_1_a7/}
}
TY - JOUR AU - I. S. Polyanskii AU - K. O. Loginov TI - Approximate method for solving the problem of conformal mapping of an arbitrary polygon to a unit circle JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2022 SP - 107 EP - 129 VL - 32 IS - 1 UR - http://geodesic.mathdoc.fr/item/VUU_2022_32_1_a7/ LA - ru ID - VUU_2022_32_1_a7 ER -
%0 Journal Article %A I. S. Polyanskii %A K. O. Loginov %T Approximate method for solving the problem of conformal mapping of an arbitrary polygon to a unit circle %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2022 %P 107-129 %V 32 %N 1 %U http://geodesic.mathdoc.fr/item/VUU_2022_32_1_a7/ %G ru %F VUU_2022_32_1_a7
I. S. Polyanskii; K. O. Loginov. Approximate method for solving the problem of conformal mapping of an arbitrary polygon to a unit circle. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 1, pp. 107-129. http://geodesic.mathdoc.fr/item/VUU_2022_32_1_a7/
[1] Driscoll T. A., Trefethen L. N., Schwarz–Christoffel mapping, Cambridge University Press, Cambridge, 2002 | DOI | MR | Zbl
[2] Polyanskii I. S., Barycentric method in computational electrodynamics, Russian Federation Security Guard Service Federal Academy, Orel, 2017
[3] Grigor'ev O. A., “Numerical-analytical method for conformal mapping of polygons with six right angles”, Computational Mathematics and Mathematical Physics, 53:10 (2013), 1447–1456 | DOI | DOI | MR
[4] Badreddine M., DeLillo T. K., Sahraei S., “A comparison of some numerical conformal mapping methods for simply and multiply connected domains”, Discrete and Continuous Dynamical Systems. Ser. B, 24:1 (2019), 55–82 | DOI | MR | Zbl
[5] Polyanskii I. S., Pekhov Yu. S., “Barycentric method in solving singular integral equations of the electrodynamic theory of mirror antennas”, SPIIRAS Proceedings, 2017, no. 5(54), 244–262 (in Russian)
[6] Favraud G., Pagneux V., “Multimodal method and conformal mapping for the scattering by a rough surface”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471:2175 (2015), 20140782 | DOI
[7] Radygin V. M., Polyanskii I. S., “Modified method of successive conformal mappings of polygonal domains”, Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2016, no. 1(39), 25–35 (in Russian) | DOI
[8] Radygin V. M., Polyanskii I. S., “Methods of conformal mappings of polyhedra in $\mathbb{R}^3$”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 27:1 (2017), 60–68 (in Russian) | DOI | MR | Zbl
[9] Nasser M. M. S., Vuorinen M., “Conformal invariants in simply connected domains”, Computational Methods and Function Theory, 20:3 (2020), 747–775 | DOI | MR | Zbl
[10] Hao Y., Simoncini V., “Matrix equation solving of PDEs in polygonal domains using conformal mappings”, Journal of Numerical Mathematics, 29:3 (2021), 221–244 | DOI | MR | Zbl
[11] Trefethen L. N., “Numerical conformal mapping with rational functions”, Computational Methods and Function Theory, 20:3 (2020), 369–387 | DOI | MR | Zbl
[12] Barnett A. H., “Evaluation of layer potentials close to the boundary for Laplace and Helmholtz problems on analytic planar domains”, SIAM Journal of Scientific Computing, 36:2 (2014), A427–A451 | DOI | MR
[13] Shirokova E. A., “On the approximate conformal mapping of the unit disk on a simply connected domain”, Russian Mathematics, 58:3 (2014), 47–56 | DOI | MR | Zbl
[14] Bogatyrev A. B., “Conformal mapping of rectangular heptagons”, Sbornik: Mathematics, 203:12 (2012), 1715–1735 | DOI | DOI | MR | Zbl
[15] Wala M., Kl{ö}ckner A., “Conformal mapping via a density correspondence for the double-layer potential”, SIAM Journal on Scientific Computing, 40:6 (2018), A3715–A3732 | DOI | MR | Zbl
[16] Il'inskii A. S., Polyanskii I. S., “An approximate method for determining the harmonic barycentric coordinates for arbitrary polygons”, Computational Mathematics and Mathematical Physics, 59:3 (2019), 366–383 | DOI | DOI | MR | Zbl
[17] Gakhov F. D., Boundary value problems, Nauka, M., 1977
[18] Tikhonov A. N., Samarskii A. A., Equations of mathematical physics, Nauka, M., 1977 | MR
[19] Muskhelishvili N. I., Singular integral equations, Nauka, M., 1968 | MR
[20] Jung Y., Lim M., “Series expansions of the layer potential operators using the Faber polynomials and their applications to the transmission problem”, SIAM Journal on Mathematical Analysis, 53:2 (2021), 1630–1669 | DOI | MR | Zbl
[21] Kress R., Linear integral equations, Springer, New York, 1999 | DOI | MR | Zbl
[22] Gradshtein I. S., Ryzhik I. M., Tables of integrals, sums, series, and products, Fizmatlit, M., 1963 | MR
[23] Hobson E. W., The theory of spherical and ellipsoidal harmonics, Cambridge University Press, Cambrige, 2012 | MR
[24] Kholshevnikov K. V., Shaidulin V. Sh., “On properties of integrals of the Legendre polynomial”, Vestnik St. Petersburg University: Mathematics, 47:1 (2014), 28–38 | DOI | MR | Zbl
[25] Krasnov M. L., Integral equations, Nauka, M., 1975
[26] Arushanyan I. O., “On the numerical solution of boundary integral equations of the second kind in domains with corner points”, Computational Mathematics and Mathematical Physics, 36:6 (1996), 773–782 | MR | Zbl