Keywords: locally boundedly sharply doubly transitive Lie group of transformations, Lie algebra
@article{VUU_2022_32_1_a4,
author = {V. A. Kyrov},
title = {On local extension of the group of parallel translations in three-dimensional space},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {62--80},
year = {2022},
volume = {32},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_1_a4/}
}
TY - JOUR AU - V. A. Kyrov TI - On local extension of the group of parallel translations in three-dimensional space JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2022 SP - 62 EP - 80 VL - 32 IS - 1 UR - http://geodesic.mathdoc.fr/item/VUU_2022_32_1_a4/ LA - ru ID - VUU_2022_32_1_a4 ER -
%0 Journal Article %A V. A. Kyrov %T On local extension of the group of parallel translations in three-dimensional space %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2022 %P 62-80 %V 32 %N 1 %U http://geodesic.mathdoc.fr/item/VUU_2022_32_1_a4/ %G ru %F VUU_2022_32_1_a4
V. A. Kyrov. On local extension of the group of parallel translations in three-dimensional space. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 1, pp. 62-80. http://geodesic.mathdoc.fr/item/VUU_2022_32_1_a4/
[1] Deré J., Origlia M., “Simply transitive NIL-affine actions of solvable Lie groups”, Forum Mathematicum, 33:5 (2021), 1349–1367 | DOI | MR | Zbl
[2] B{ă}di{ţ}oiu G., “Classification of homogeneous Einstein metrics on pseudo-hyperbolic spaces”, Transformation Groups, 25:2 (2020), 335–361 | DOI | MR
[3] Globke W., “On compact homogeneous $G_{2(2)}$-manifolds”, Journal of the Australian Mathematical Society, 110:1 (2021), 71–80 | DOI | MR
[4] Belliart M., “A differentiable classification of certain locally free actions of Lie groups”, Israel Journal of Mathematics, 224:1 (2018), 315–342 | DOI | MR | Zbl
[5] Arvanitoyeorgos A., Souris N. P., Statha M., “Geodesic orbit metrics in a class of homogeneous bundles over quaternionic Stiefel manifolds”, Journal of Geometry and Physics, 165 (2021), 104223 | DOI | MR | Zbl
[6] Magazev A. A., “Constructing a complete integral of the Hamilton–Jacobi equation on pseudo-Riemannian spaces with simply transitive groups of motions”, Mathematical Physics, Analysis and Geometry, 24:2 (2021), 11 | DOI | MR | Zbl
[7] Avdeev R., “On extended weight monoids of spherical homogeneous spaces”, Transformation Groups, 26:2 (2021), 403–431 | DOI | MR | Zbl
[8] Peraza J., Paternain M., Reisenberger M., “On the classical and quantum Geroch group”, Classical and Quantum Gravity, 38:1 (2021), 015013 pp. | DOI | MR | Zbl
[9] Stephani H., Kramer D., MacCallum M., Hoenselaers C., Herlt E., Exact solutions of Einstein's field equations, Cambridge University Press, Cambridge, 2009 | DOI | MR
[10] Gorbatsevich V. V., “Extension of transitive actions of Lie groups”, Izvestiya: Mathematics, 81:6 (2017), 1143–1154 | DOI | DOI | MR | Zbl
[11] Barbot T., Maquera C., “Nil-Anosov actions”, Mathematische Zeitschrift, 287:3–4 (2017), 1279–1305 | DOI | MR | Zbl
[12] Tits J., “Sur les groupes doublement transitifs continus”, Commentarii Mathematici Helvetici, 26 (1952), 203–224 (in French) http://eudml.org/doc/139046 | DOI | MR | Zbl
[13] Tits J., “Sur les groupes doublement transitifs continus: correction et compléments”, Commentarii Mathematici Helvetici, 30 (1956), 234–240 (in French) http://eudml.org/doc/139124 | DOI | MR | Zbl
[14] Kramer L., “Two-transitive Lie groups”, Journal f{ü}r die reine und angewandte Mathematik, 563 (2003), 83–113 | DOI | MR | Zbl
[15] Glasner Y., Gulko D. D., “Non-split linear sharply 2-transitive groups”, Proceedings of the American Mathematical Society, 149:6 (2021), 2305–2317 | DOI | MR | Zbl
[16] Kakkar V., Lal R., Lal R., Yadav A. C., “Generalized right near domains and sharply 2-transitive groups”, Journal of Algebra and Its Applications, 20:10 (2021), 2150176 | DOI | MR | Zbl
[17] Mikhailichenko G. G., Group symmetry of physical structures, Barnaul State Pedagogical Institute, Barnaul, 2003
[18] Kyrov V. A., “To the question of local extension of the parallel translations group of three-dimensional space”, Vladikavkazskii Matematicheskii Zhurnal, 23:1 (2021), 32–42 (in Russian) | DOI | MR | Zbl
[19] Fels M., Olver P. J., “Moving coframes: I. A practical algorithm”, Acta Applicandae Mathematicae, 51:2 (1998), 161–213 | DOI | MR
[20] Fels M., Olver P. J., “Moving coframes: II. A practical algorithm”, Acta Applicandae Mathematicae, 55:2 (1999), 127–208 | DOI | MR | Zbl
[21] Shirokov I. V., “Constructing Lie algebras of first-order differential operators”, Russian Physics Journal, 40:6 (1997), 525–530 | DOI | MR
[22] Kyrov V. A., Mikhailichenko G. G., “Embedding of an additive two-dimensional phenomenologically symmetric geometry of two sets of rank $(2,2)$ into two-dimensional phenomenologically symmetric geometries of two sets of rank $(3,2)$”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 28:3 (2018), 305–327 (in Russian) | DOI | MR | Zbl
[23] Bredon G. E., Introduction to compact transformation groups, Academic Press, New York, 1972 | MR | Zbl
[24] Ovsyannikov L. V., Group analysis of differential equations, Nauka, M., 1978 | MR
[25] Morozov V. V., “Classification of nilpotent Lie algebras of the sixth order”, Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 1958, no. 4, 161–171 (in Russian) | Zbl
[26] Mubarakzyanov G. M., “On solvable Lie algebras”, Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 1963, no. 1, 114–123 (in Russian) | MR | Zbl
[27] Mubarakzyanov G. M., “Classification of solvable Lie algebras of sixth order with a non-nilpotent basis element”, Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 1963, no. 4, 104–116 (in Russian) | MR | Zbl
[28] Turkowski P., “Solvable Lie algebras of dimension six”, Journal of Mathematical Physics, 31:6 (1990), 1344–1350 | DOI | MR | Zbl
[29] Turkowski P., “Low-dimensional real Lie algebras”, Journal of Mathematical Physics, 29:10 (1988), 2139–2144 | DOI | MR | Zbl