On local extension of the group of parallel translations in three-dimensional space
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 1, pp. 62-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we solve the problem of extending the group of parallel translations of a three-dimensional space to a locally boundedly sharply doubly transitive Lie group of transformations of the same space. Local bounded sharply double transitivity means that there is a single transformation that takes an arbitrary pair of non-coincident points from some open neighborhood to almost any pair of points from the same neighborhood. In this article, the problem posed is solved for two cases related to Jordan forms of third-order matrices. These matrices are used to write systems of linear differential equations, whose solutions lead to the basic operators of a six-dimensional linear space. Requiring the closedness of the commutators of these operators, we select the Lie algebras. Checking also the condition of local bounded sharply double transitivity, we obtain the Lie algebras of locally boundedly sharply doubly transitive Lie groups of transformations of a three-dimensional space with a subgroup of parallel translations. As a result, three Lie algebras are obtained, two of which can be represented as a half-line sum of a commutative three-dimensional ideal and a three-dimensional Lie subalgebra, and the third one decomposes into a half-line sum of a commutative three-dimensional ideal and a subalgebra isomorphic to $sl(2,R)$.
Mots-clés : Lie group of transformations, Jordan form of a matrix.
Keywords: locally boundedly sharply doubly transitive Lie group of transformations, Lie algebra
@article{VUU_2022_32_1_a4,
     author = {V. A. Kyrov},
     title = {On local extension of the group of parallel translations in three-dimensional space},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {62--80},
     year = {2022},
     volume = {32},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_1_a4/}
}
TY  - JOUR
AU  - V. A. Kyrov
TI  - On local extension of the group of parallel translations in three-dimensional space
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2022
SP  - 62
EP  - 80
VL  - 32
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2022_32_1_a4/
LA  - ru
ID  - VUU_2022_32_1_a4
ER  - 
%0 Journal Article
%A V. A. Kyrov
%T On local extension of the group of parallel translations in three-dimensional space
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2022
%P 62-80
%V 32
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2022_32_1_a4/
%G ru
%F VUU_2022_32_1_a4
V. A. Kyrov. On local extension of the group of parallel translations in three-dimensional space. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 1, pp. 62-80. http://geodesic.mathdoc.fr/item/VUU_2022_32_1_a4/

[1] Deré J., Origlia M., “Simply transitive NIL-affine actions of solvable Lie groups”, Forum Mathematicum, 33:5 (2021), 1349–1367 | DOI | MR | Zbl

[2] B{ă}di{ţ}oiu G., “Classification of homogeneous Einstein metrics on pseudo-hyperbolic spaces”, Transformation Groups, 25:2 (2020), 335–361 | DOI | MR

[3] Globke W., “On compact homogeneous $G_{2(2)}$-manifolds”, Journal of the Australian Mathematical Society, 110:1 (2021), 71–80 | DOI | MR

[4] Belliart M., “A differentiable classification of certain locally free actions of Lie groups”, Israel Journal of Mathematics, 224:1 (2018), 315–342 | DOI | MR | Zbl

[5] Arvanitoyeorgos A., Souris N. P., Statha M., “Geodesic orbit metrics in a class of homogeneous bundles over quaternionic Stiefel manifolds”, Journal of Geometry and Physics, 165 (2021), 104223 | DOI | MR | Zbl

[6] Magazev A. A., “Constructing a complete integral of the Hamilton–Jacobi equation on pseudo-Riemannian spaces with simply transitive groups of motions”, Mathematical Physics, Analysis and Geometry, 24:2 (2021), 11 | DOI | MR | Zbl

[7] Avdeev R., “On extended weight monoids of spherical homogeneous spaces”, Transformation Groups, 26:2 (2021), 403–431 | DOI | MR | Zbl

[8] Peraza J., Paternain M., Reisenberger M., “On the classical and quantum Geroch group”, Classical and Quantum Gravity, 38:1 (2021), 015013 pp. | DOI | MR | Zbl

[9] Stephani H., Kramer D., MacCallum M., Hoenselaers C., Herlt E., Exact solutions of Einstein's field equations, Cambridge University Press, Cambridge, 2009 | DOI | MR

[10] Gorbatsevich V. V., “Extension of transitive actions of Lie groups”, Izvestiya: Mathematics, 81:6 (2017), 1143–1154 | DOI | DOI | MR | Zbl

[11] Barbot T., Maquera C., “Nil-Anosov actions”, Mathematische Zeitschrift, 287:3–4 (2017), 1279–1305 | DOI | MR | Zbl

[12] Tits J., “Sur les groupes doublement transitifs continus”, Commentarii Mathematici Helvetici, 26 (1952), 203–224 (in French) http://eudml.org/doc/139046 | DOI | MR | Zbl

[13] Tits J., “Sur les groupes doublement transitifs continus: correction et compléments”, Commentarii Mathematici Helvetici, 30 (1956), 234–240 (in French) http://eudml.org/doc/139124 | DOI | MR | Zbl

[14] Kramer L., “Two-transitive Lie groups”, Journal f{ü}r die reine und angewandte Mathematik, 563 (2003), 83–113 | DOI | MR | Zbl

[15] Glasner Y., Gulko D. D., “Non-split linear sharply 2-transitive groups”, Proceedings of the American Mathematical Society, 149:6 (2021), 2305–2317 | DOI | MR | Zbl

[16] Kakkar V., Lal R., Lal R., Yadav A. C., “Generalized right near domains and sharply 2-transitive groups”, Journal of Algebra and Its Applications, 20:10 (2021), 2150176 | DOI | MR | Zbl

[17] Mikhailichenko G. G., Group symmetry of physical structures, Barnaul State Pedagogical Institute, Barnaul, 2003

[18] Kyrov V. A., “To the question of local extension of the parallel translations group of three-dimensional space”, Vladikavkazskii Matematicheskii Zhurnal, 23:1 (2021), 32–42 (in Russian) | DOI | MR | Zbl

[19] Fels M., Olver P. J., “Moving coframes: I. A practical algorithm”, Acta Applicandae Mathematicae, 51:2 (1998), 161–213 | DOI | MR

[20] Fels M., Olver P. J., “Moving coframes: II. A practical algorithm”, Acta Applicandae Mathematicae, 55:2 (1999), 127–208 | DOI | MR | Zbl

[21] Shirokov I. V., “Constructing Lie algebras of first-order differential operators”, Russian Physics Journal, 40:6 (1997), 525–530 | DOI | MR

[22] Kyrov V. A., Mikhailichenko G. G., “Embedding of an additive two-dimensional phenomenologically symmetric geometry of two sets of rank $(2,2)$ into two-dimensional phenomenologically symmetric geometries of two sets of rank $(3,2)$”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 28:3 (2018), 305–327 (in Russian) | DOI | MR | Zbl

[23] Bredon G. E., Introduction to compact transformation groups, Academic Press, New York, 1972 | MR | Zbl

[24] Ovsyannikov L. V., Group analysis of differential equations, Nauka, M., 1978 | MR

[25] Morozov V. V., “Classification of nilpotent Lie algebras of the sixth order”, Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 1958, no. 4, 161–171 (in Russian) | Zbl

[26] Mubarakzyanov G. M., “On solvable Lie algebras”, Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 1963, no. 1, 114–123 (in Russian) | MR | Zbl

[27] Mubarakzyanov G. M., “Classification of solvable Lie algebras of sixth order with a non-nilpotent basis element”, Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 1963, no. 4, 104–116 (in Russian) | MR | Zbl

[28] Turkowski P., “Solvable Lie algebras of dimension six”, Journal of Mathematical Physics, 31:6 (1990), 1344–1350 | DOI | MR | Zbl

[29] Turkowski P., “Low-dimensional real Lie algebras”, Journal of Mathematical Physics, 29:10 (1988), 2139–2144 | DOI | MR | Zbl