@article{VUU_2022_32_1_a3,
author = {S. P. Kuznetsov and V. V. Mochalov and V. P. Chuev},
title = {Pauli's theorem in {Clifford} algebras of odd dimension},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {44--61},
year = {2022},
volume = {32},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_1_a3/}
}
TY - JOUR AU - S. P. Kuznetsov AU - V. V. Mochalov AU - V. P. Chuev TI - Pauli's theorem in Clifford algebras of odd dimension JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2022 SP - 44 EP - 61 VL - 32 IS - 1 UR - http://geodesic.mathdoc.fr/item/VUU_2022_32_1_a3/ LA - ru ID - VUU_2022_32_1_a3 ER -
%0 Journal Article %A S. P. Kuznetsov %A V. V. Mochalov %A V. P. Chuev %T Pauli's theorem in Clifford algebras of odd dimension %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2022 %P 44-61 %V 32 %N 1 %U http://geodesic.mathdoc.fr/item/VUU_2022_32_1_a3/ %G ru %F VUU_2022_32_1_a3
S. P. Kuznetsov; V. V. Mochalov; V. P. Chuev. Pauli's theorem in Clifford algebras of odd dimension. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 1, pp. 44-61. http://geodesic.mathdoc.fr/item/VUU_2022_32_1_a3/
[1] Lounesto P., Clifford algebras and spinors, Cambridge University Press, 2009 | DOI | MR
[2] Marchuk N. G., Shirokov D. S., Introduction in theory of Clifford algebras, Fazis, M., 2012
[3] Marchuk N. G., “Demonstration representation and tensor products of Clifford algebras”, Proceedings of the Steklov Institute of Mathematics, 290:1 (2015), 143–154 | DOI | DOI | MR | Zbl
[4] Shirokov D. S., “Extension of Pauli's theorem to Clifford algebras”, Doklady Mathematics, 84:2 (2011), 699–701 | DOI | MR | Zbl
[5] Shirokov D. S., “Generalization of Pauli's theorem on the case of Clifford algebras”, Nanostuctures. Mathematical Physics and Modelling, 9:1 (2013), 93–104 (in Russian)
[6] Shirokov D. S., “Calculation of elements of spin groups using generalized Pauli's theorem”, Advances in Applied Clifford Algebras, 25:1 (2015), 227–244 | DOI | MR | Zbl
[7] Shirokov D. S., Method of generalized Reynolds operators in Clifford algebras, 2020, 20 pp., arXiv: 1409.8163v3 | MR
[8] Shirokov D. S., “Pauli theorem in the description of $n$-dimensional spinors in the Clifford algebra formalism”, Theoretical and Mathematical Physics, 175:1 (2013), 454–474 | DOI | DOI | MR | Zbl
[9] Shirokov D. S., “The use of the generalized Pauli's theorem for odd elements of Clifford algebra to analyze relations between spin and orthogonal groups of arbitrary dimensions”, Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta. Seriya “Fiziko-Matematicheskie Nauki”, 2013, no. 1(30), 279–287 (in Russian) | DOI
[10] Shirokov D. S., “Method of averaging in Clifford algebras”, Advances in Applied Clifford Algebras, 27:1 (2017), 149–163 | DOI | MR | Zbl
[11] Kuznetsov S. P., Mochalov V. V., Chuev V. P., “On Pauli's theorem in the Clifford algebra”, Russian Mathematics, 63:11 (2019), 13–27 | DOI | DOI | MR | Zbl
[12] Kuznetsov S. P., Mochalov V. V., Chuev V. P., “On Pauli's theorem in the Clifford algebra $R_{1,3}$”, Advances in Applied Clifford Algebras, 29:5 (2019), 103 | DOI | MR | Zbl
[13] Kuznetsov S. P., Mochalov V. V., Chuev V. P., “On Pauli's theorem in Clifford algebra $R_{p,q}$”, ANS conference series: scientific heritage of Sergey A. Chaplygin (nonholonomic mechanics, vortex structures and hydrodynamics), 2019, 133–135 | MR