Pauli's theorem in Clifford algebras of odd dimension
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 1, pp. 44-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Pauli's theorem is investigated in real Clifford algebras of odd dimension. In Clifford algebras $R_{3,0}$ and $R_{5,0}$ an algorithm for constructing the Pauli operator is given. This algorithm is transferred to an arbitrary Clifford algebra of odd dimension $R_{p,q+1}$ ($R_{p+1,q}$). An iterative formula for finding the Pauli operator is obtained. It is shown that the problem of constructing the Pauli operator is related to the problem of zero divisors in Clifford algebras. When constructing Pauli operators, two types of conjugations are used: Clifford conjugation and reverse conjugation. If $p+q+1\equiv 3 \pmod 4$, then when constructing the Pauli operator Clifford conjugation is used; if $p+q+1\equiv 1 \pmod 4$ then reverse conjugation is used.
Keywords: odd Clifford algebras, Pauli theorem, zero divisors.
@article{VUU_2022_32_1_a3,
     author = {S. P. Kuznetsov and V. V. Mochalov and V. P. Chuev},
     title = {Pauli's theorem in {Clifford} algebras of odd dimension},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {44--61},
     year = {2022},
     volume = {32},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_1_a3/}
}
TY  - JOUR
AU  - S. P. Kuznetsov
AU  - V. V. Mochalov
AU  - V. P. Chuev
TI  - Pauli's theorem in Clifford algebras of odd dimension
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2022
SP  - 44
EP  - 61
VL  - 32
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2022_32_1_a3/
LA  - ru
ID  - VUU_2022_32_1_a3
ER  - 
%0 Journal Article
%A S. P. Kuznetsov
%A V. V. Mochalov
%A V. P. Chuev
%T Pauli's theorem in Clifford algebras of odd dimension
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2022
%P 44-61
%V 32
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2022_32_1_a3/
%G ru
%F VUU_2022_32_1_a3
S. P. Kuznetsov; V. V. Mochalov; V. P. Chuev. Pauli's theorem in Clifford algebras of odd dimension. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 1, pp. 44-61. http://geodesic.mathdoc.fr/item/VUU_2022_32_1_a3/

[1] Lounesto P., Clifford algebras and spinors, Cambridge University Press, 2009 | DOI | MR

[2] Marchuk N. G., Shirokov D. S., Introduction in theory of Clifford algebras, Fazis, M., 2012

[3] Marchuk N. G., “Demonstration representation and tensor products of Clifford algebras”, Proceedings of the Steklov Institute of Mathematics, 290:1 (2015), 143–154 | DOI | DOI | MR | Zbl

[4] Shirokov D. S., “Extension of Pauli's theorem to Clifford algebras”, Doklady Mathematics, 84:2 (2011), 699–701 | DOI | MR | Zbl

[5] Shirokov D. S., “Generalization of Pauli's theorem on the case of Clifford algebras”, Nanostuctures. Mathematical Physics and Modelling, 9:1 (2013), 93–104 (in Russian)

[6] Shirokov D. S., “Calculation of elements of spin groups using generalized Pauli's theorem”, Advances in Applied Clifford Algebras, 25:1 (2015), 227–244 | DOI | MR | Zbl

[7] Shirokov D. S., Method of generalized Reynolds operators in Clifford algebras, 2020, 20 pp., arXiv: 1409.8163v3 | MR

[8] Shirokov D. S., “Pauli theorem in the description of $n$-dimensional spinors in the Clifford algebra formalism”, Theoretical and Mathematical Physics, 175:1 (2013), 454–474 | DOI | DOI | MR | Zbl

[9] Shirokov D. S., “The use of the generalized Pauli's theorem for odd elements of Clifford algebra to analyze relations between spin and orthogonal groups of arbitrary dimensions”, Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta. Seriya “Fiziko-Matematicheskie Nauki”, 2013, no. 1(30), 279–287 (in Russian) | DOI

[10] Shirokov D. S., “Method of averaging in Clifford algebras”, Advances in Applied Clifford Algebras, 27:1 (2017), 149–163 | DOI | MR | Zbl

[11] Kuznetsov S. P., Mochalov V. V., Chuev V. P., “On Pauli's theorem in the Clifford algebra”, Russian Mathematics, 63:11 (2019), 13–27 | DOI | DOI | MR | Zbl

[12] Kuznetsov S. P., Mochalov V. V., Chuev V. P., “On Pauli's theorem in the Clifford algebra $R_{1,3}$”, Advances in Applied Clifford Algebras, 29:5 (2019), 103 | DOI | MR | Zbl

[13] Kuznetsov S. P., Mochalov V. V., Chuev V. P., “On Pauli's theorem in Clifford algebra $R_{p,q}$”, ANS conference series: scientific heritage of Sergey A. Chaplygin (nonholonomic mechanics, vortex structures and hydrodynamics), 2019, 133–135 | MR