@article{VUU_2022_32_1_a1,
author = {P. V. Danchev},
title = {Weakly invo-clean rings having weak involution},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {18--25},
year = {2022},
volume = {32},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_1_a1/}
}
P. V. Danchev. Weakly invo-clean rings having weak involution. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 1, pp. 18-25. http://geodesic.mathdoc.fr/item/VUU_2022_32_1_a1/
[1] Danchev P. V., “Weakly UU rings”, Tsukuba Journal of Mathematics, 40:1 (2016), 101–118 | DOI | MR | Zbl
[2] Danchev P. V., “Invo-clean unital rings”, Commun. Korean Math. Soc., 32:1 (2017), 19–27 | DOI | MR | Zbl
[3] Danchev P. V., “Weakly invo-clean unital rings”, Afrika Matematika, 28:7–8 (2017), 1285–1295 | DOI | MR | Zbl
[4] Danchev P. V., “Feebly invo-clean unital rings”, Annales Universitatis Scientiarium Budapestinensis de Rolando E{ö}tv{ö}s Nominatae. Sectio Mathematica, 60 (2017), 85–91 | MR | Zbl
[5] Danchev P. V., “Invo-regular unital rings”, Annales Universitatis Mariae Curie–Sklodowska, sectio A — Mathematica, 72:1 (2018), 45–53 | DOI | MR | Zbl
[6] Danchev P. V., “A characterization of weakly $J(n)$-rings”, Journal of Mathematics and Applications, 41 (2018), 53–61 | MR | Zbl
[7] Danchev P. V., “Weakly tripotent rings”, Kragujevac Journal of Mathematics, 43:3 (2019), 465–469 | MR | Zbl
[8] Danchev P. V., “Weakly quadratent rings”, Journal of Taibah University for Science, 13:1 (2019), 121–123 | DOI | MR
[9] Danchev P. V., “On two classes of rings having weak involution”, Far East Journal of Mathematical Sciences, 130:1 (2021), 43–58 | DOI | MR
[10] Danchev P. V., McGovern W. Wm., “Commutative weakly nil clean unital rings”, Journal of Algebra, 425:5 (2015), 410–422 | DOI | MR | Zbl
[11] Danchev P., Matczuk J., “$n$-torsion clean rings”, Contemporary Mathematics, 727, 2019, 71–82 | DOI | MR | Zbl
[12] Hirano Y., Tominaga H., “Rings in which every element is the sum of two idempotents”, Bulletin of the Australian Mathematical Society, 37:2 (1988), 161–164 | DOI | MR | Zbl
[13] Lam T. Y., A first course in noncommutative rings, Springer, New York, 2001 | DOI | MR | Zbl
[14] Perić V., “On rings with polynomial identity $x^n-x=0$”, Publications de l'Institut Mathématique, 34(38) (1983), 165–168 | MR