@article{VUU_2022_32_1_a0,
author = {N. P. Volchkova and Vit. V. Volchkov},
title = {Vector fields with zero flux through circles of fixed radius on $ \mathbb{H}^2$},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {3--17},
year = {2022},
volume = {32},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_1_a0/}
}
TY - JOUR
AU - N. P. Volchkova
AU - Vit. V. Volchkov
TI - Vector fields with zero flux through circles of fixed radius on $ \mathbb{H}^2$
JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY - 2022
SP - 3
EP - 17
VL - 32
IS - 1
UR - http://geodesic.mathdoc.fr/item/VUU_2022_32_1_a0/
LA - ru
ID - VUU_2022_32_1_a0
ER -
%0 Journal Article
%A N. P. Volchkova
%A Vit. V. Volchkov
%T Vector fields with zero flux through circles of fixed radius on $ \mathbb{H}^2$
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2022
%P 3-17
%V 32
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2022_32_1_a0/
%G ru
%F VUU_2022_32_1_a0
N. P. Volchkova; Vit. V. Volchkov. Vector fields with zero flux through circles of fixed radius on $ \mathbb{H}^2$. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 1, pp. 3-17. http://geodesic.mathdoc.fr/item/VUU_2022_32_1_a0/
[1] Zalcman L., “A bibliographic survey of the Pompeiu problem”, Approximation by solutions of partial differential equations, Springer, Dordrecht, 1992, 185–194 | DOI | MR
[2] Berenstein C. A., Struppa D. C., “Complex analysis and convolution equations”, Several complex variables. V: Complex analysis in partial differential equations and mathematical physics, Encyclopaedia of Mathematical Sciences, 54, Springer, Berlin, 1993, 1–108 | DOI
[3] Zalcman L., “Supplementary bibliography to “A bibliographic survey of the Pompeiu problem””, Radon Transforms and Tomography, 278 (2001), 69–74 | DOI | MR | Zbl
[4] Volchkov V. V., Integral geometry and convolution equations, Springer, Dordrecht, 2003 | DOI | MR
[5] Volchkov V. V., Volchkov Vit. V., Harmonic analysis of mean periodic functions on symmetric spaces and the Heisenberg group, Springer, London, 2009 | DOI | MR | Zbl
[6] Volchkov V. V., Volchkov Vit. V., Offbeat integral geometry on symmetric spaces, Birkh{ä}user, Basel, 2013 | DOI | MR | Zbl
[7] Smith J. D., “Harmonic analysis of scalar and vector fields in $\mathbb R^n$”, Mathematical Proceedings of the Cambridge Philosophical Society, 72:3 (1972), 403–416 | DOI | MR | Zbl
[8] John F., Plane waves and spherical means. Applied to partial differential equations, Springer, New York, 1981 | DOI | MR | Zbl
[9] Thangavelu S., “Spherical means and $\mathrm{CR}$ functions on the Heisenberg group”, Journal d'Analyse Mathématique, 63 (1994), 255–286 | DOI | MR | Zbl
[10] Degtyarev S. P., “Liouville property for solutions of the linearized degenerate thin film equation of fourth order in a halfspace”, Results in Mathematics, 70 (2016), 137–161 | DOI | MR | Zbl
[11] Ungar P., “Freak theorem about functions on a sphere”, Journal of the London Mathematical Society, s1–29:1 (1954), 100–103 | DOI | MR | Zbl
[12] Schneider R., “Functions on a sphere with vanishing integrals over certain subspheres”, Journal of Mathematical Analysis and Applications, 26:2 (1969), 381–384 | DOI | MR | Zbl
[13] Delsarte J., “Note sur une propriété nouvelle des fonctions harmoniques”, C. R. Acad. Sci. Paris, 246 (1958), 1358–1360 (in French) | MR | Zbl
[14] Netuka I., Veselý J., “Mean value property and harmonic functions”, Classical and modern potential theory and applications, Springer, Dordrecht, 1994, 359–398 | DOI | MR
[15] Kuznetsov N., “Mean value properties of harmonic functions and related topics (a survey)”, Journal of Mathematical Sciences, 242:2 (2019), 177–199 | DOI | MR | Zbl
[16] Trofymenko O. D., “Convolution equations and mean-value theorems for solutions of linear elliptic equations with constant coefficients in the complex plane”, Journal of Mathematical Sciences, 229:1 (2018), 96–107 | DOI | MR | Zbl
[17] Trofymenko O. D., “Mean value theorems for polynomial solutions of linear elliptic equations with constant coefficients in the complex plane”, Journal of Mathematical Sciences, 254:3 (2021), 439–443 | DOI | Zbl
[18] Volchkov V. V., “A definitive version of the local two-radii theorem”, Sb. Math., 186:6 (1995), 783–802 | DOI | MR | Zbl
[19] Volchkov V. V., “Solution of the support problem for several function classes”, Sb. Math., 188:9 (1997), 1279–1294 | DOI | DOI | MR | Zbl
[20] Volchkov V. V., Volchkov Vit. V., “Continuous mean periodic extension of functions from an interval”, Dokl. Math., 103:1 (2021), 14–18 | DOI | DOI | Zbl
[21] Volchkov V. V., Volchkov Vit. V., “Continuous extension of functions from a segment to functions in $\mathbb{R}^n$ with zero ball means”, Russian Mathematics, 65:3 (2021), 1–11 | DOI | DOI | MR | Zbl
[22] Volchkova N. P., Volchkov Vit. V., Ishchenko N. A., “Erasing of singularities of functions with zero integrals over disks”, Vladikavkazskii Matematicheskii Zhurnal, 23:2 (2021), 19–33 (in Russian) | DOI
[23] Volchkov Vit. V., Volchkova N. P., “The removability problem for functions with zero spherical means”, Siberian Mathematical Journal, 58:3 (2017), 419–426 | DOI | DOI | MR | Zbl
[24] Berenstein C. A., Gay R., Yger A., “Inversion of the local Pompeiu transform”, Journal d'Analyse Mathématique, 54 (1990), 259–287 | DOI | MR | Zbl
[25] Berkani M., El Harchaoui M., Gay R., “Inversion de la transformation de Pompéiu locale dans l'espace hyperbolique quaternique — Cas des deux boules”, Complex Variables, Theory and Application: An International Journal, 43:1 (2000), 29–57 | DOI | MR | Zbl
[26] Volchkov Vit. V., Volchkova N. P., “Inversion of the local Pompeiu transformation on a quaternionic hyperbolic space”, Dokl. Math., 64:1 (2001), 90–93 | MR | Zbl | Zbl
[27] Volchkov Vit. V., Volchkova N. P., “Inversion theorems for the local Pompeiu transformation in the quaternion hyperbolic space”, St. Petersburg Math. J., 15:5 (2004), 753–771 | DOI | MR | Zbl
[28] Rubin B., “Reconstruction of functions on the sphere from their integrals over hyperplane sections”, Analysis and Mathematical Physics, 9:4 (2019), 1627–1664 | DOI | MR | Zbl
[29] Salman Y., “Recovering functions defined on the unit sphere by integration on a special family of sub-spheres”, Analysis and Mathematical Physics, 7:2 (2017), 165–185 | DOI | MR | Zbl
[30] Hielscher R., Quellmalz M., “Reconstructing a function on the sphere from its means along vertical slices”, Inverse Problems and Imaging, 10:3 (2016), 711–739 | DOI | MR | Zbl
[31] Ochakovskaya O. A., “Approximation in $L^p$ by linear combinations of the indicators of balls”, Journal of Mathematical Sciences, 218:1 (2016), 39–46 | DOI | MR | Zbl
[32] Volchkov V. V., Volchkov Vit. V., “Interpolation problems for functions with zero integrals over balls of fixed radius”, Doklady Mathematics, 101:1 (2020), 16–19 | DOI | DOI | MR | Zbl
[33] Volchkov Vit. V., Volchkova N. P., “Vector fields with zero flux through spheres of fixed radius”, Vladikavkazskii Matematicheskii Zhurnal, 20:4 (2018), 20–34 (in Russian) | DOI | MR | Zbl
[34] Ahlfors L. V., M{ö}ebius transformations in several dimensions, University of Minnesota, Minneapolis, 1981 | MR | Zbl
[35] Bateman H., Erdélyi A.., Higher transcendental functions, v. I, II, McGraw-Hill, New York, 1953 | MR
[36] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integrals and series, v. 3, Special functions. Additional chapters, Fizmatlit, M., 2003 | MR
[37] Volchkov V. V., “A definitive version of the local two-radii theorem on hyperbolic spaces”, Izv. Math., 65:2 (2001), 207–229 | DOI | DOI | MR | Zbl
[38] Gel'fand I. M., Graev M. I., Retakh V. S., “General hypergeometric systems of equations and series of hypergeometric type”, Russian Mathematical Surveys, 47:4 (1992), 1–88 | DOI | MR | Zbl
[39] Sadykov T. M., Tsikh A. K., Hypergeometric and algebraic functions in several variables, Nauka, M., 2014
[40] Vilenkin N. Ja., Special functions and the theory of group representations, AMS, 1968 | DOI | MR | MR | Zbl