On properties of one functional used in software constructions for solving differential games
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 4, pp. 668-696 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Nonlinear differential game (DG) is investigated; relaxations of the game problem of guidance are investigated also. The variant of the program iterations method realized in the space of position functions and delivering in limit the value function of the minimax-maximin DG for special functionals of a trajectory is considered. For every game position, this limit function realizes the least size of the target set neighborhood for which, under proportional weakening of phase constraints, the player interested in a guidance yet guarantees its realization. Properties of above-mentioned functionals and limit function are investigated. In particular, sufficient conditions for realization of values of given function under fulfilment of finite iteration number are obtained.
Keywords: differential game, program iteration method, value function.
@article{VUU_2021_31_4_a9,
     author = {A. G. Chentsov},
     title = {On properties of one functional used in software constructions for solving differential games},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {668--696},
     year = {2021},
     volume = {31},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_4_a9/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - On properties of one functional used in software constructions for solving differential games
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2021
SP  - 668
EP  - 696
VL  - 31
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2021_31_4_a9/
LA  - ru
ID  - VUU_2021_31_4_a9
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T On properties of one functional used in software constructions for solving differential games
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2021
%P 668-696
%V 31
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2021_31_4_a9/
%G ru
%F VUU_2021_31_4_a9
A. G. Chentsov. On properties of one functional used in software constructions for solving differential games. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 4, pp. 668-696. http://geodesic.mathdoc.fr/item/VUU_2021_31_4_a9/

[1] Krasovskii N. N., Subbotin A. I., “An alternative for the game problem of convergence”, Journal of Applied Mathematics and Mechanics, 34:6 (1970), 948–965 | DOI | MR | Zbl

[2] Krasovskii N. N., Subbotin A. I., Game-theoretical control problems, Springer, New York, 1988 | DOI | Zbl

[3] Isaacs R., Differential games, John Wiley and Sons, New York, 1965 | Zbl

[4] Krasovskii N. N., Game problems on the encounter of motions, Nauka, M., 1970

[5] Krasovskiy N. N., “A differential game of approach and evasion. I”, Engineering Cybernetics, 11:2 (1973), 189–203 | MR | Zbl

[6] Krasovskiy N. N., “A differential game of approach and evasion. II”, Engineering Cybernetics, 11:3 (1973), 376–394 | MR | Zbl

[7] Chentsov A. G., “On the structure of a game problem of convergence”, Soviet Mathematics. Doklady, 16 (1975), 1404–1408 | MR | Zbl

[8] Chentsov A. G., “On a game problem of guidance”, Soviet Mathematics. Doklady, 17 (1976), 73–77 | MR | Zbl

[9] Čencov A. G., “On a game problem of converging at a given instant of time”, Mathematics of the USSR — Sbornik, 28 (1976), 353–376 | DOI | MR | Zbl

[10] Chistiakov S. V., “On solving pursuit game problems”, Journal of Applied Mathematics and Mechanics, 41:5 (1977), 845–852 | DOI | MR

[11] Ukhobotov V. I., “Construction of a stable bridge for a class of linear games”, Journal of Applied Mathematics and Mechanics, 41:2 (1977), 350–354 | DOI | MR

[12] Subbotin A. I., Chentsov A. G., Optimization of guarantee in control problems, Nauka, M., 1981

[13] Kryazimskii A. V., “On the theory of positional differential games of convergence–evasion”, Soviet Mathematics. Doklady, 19:2 (1978), 408–412 | MR | Zbl

[14] Pontryagin L. S., “On the theory of differential games”, Russian Mathematical Surveys, 21:4 (1966), 193–246 | DOI | MR | Zbl

[15] Pontryagin L. S., “Linear differential games. I”, Soviet Mathematics. Doklady, 8 (1967), 769–771 | Zbl

[16] Pontryagin L. S., “Linear differential games. II”, Soviet Mathematics. Doklady, 8 (1967), 910–912 | Zbl

[17] Pshenichnyj B. N., “The structure of differential games”, Soviet Mathematics. Doklady, 10 (1969), 70–72 | Zbl

[18] Kurzhanskii A. B., Control and observation under uncertainty conditions, Nauka, M., 1977

[19] Osipov Yu. S., Kryazhimskii A. V., Inverse problems for ordinary differential equations: dynamical solutions, Gordon and Breach, Amsterdam, 1995 | Zbl

[20] Subbotin A. I., Minimax inequalities and Hamilton–Jacobi equations, Nauka, M., 1991

[21] Subbotin A. I., Generalized solutions of first-order PDEs. The dynamical optimization perspective, Birkh{ä}user, Boston, 1995 | DOI

[22] Chentsov A. G., “Some questions of differential game theory with phase constraints”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 56 (2020), 138–184 (in Russian) | DOI | Zbl

[23] Chentsov A. G., Khachay D. M., “Relaxation of a dynamic game of guidance and program constructions of control”, Minimax Theory and its Applications, 5:2 (2020), 275–304 | MR | Zbl

[24] Chentsov A. G, Khachai D. M., “Relaxation of pursuit–evasion differential game and program absorption operator”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 30:1 (2020), 64–91 (in Russian) | DOI | MR

[25] Kuratowski K., Mostowski A., Set theory, North-Holland, Amsterdam, 1967 | Zbl

[26] Chentsov A. G., The elements of finitely additive measures theory, v. I, USTU-UPI, Yekaterinburg, 2008

[27] Warga J., Optimal control of differential and functional equations, Academic Press, New York, 1972 | DOI | Zbl

[28] Neveu J., Bases mathématiques du calcul des probabilités, Masson, Paris, 1964

[29] Billingsley P., Convergence of probability measures, John Wiley and Sons, 1968 | Zbl

[30] Chentsov A. G., The method of program iterations for a differential approach–evasion game, Available from VINITI, No 1933-79, Sverdlovsk, 1979

[31] Dieudonné J., Foundations of modern analysis, Academic Press, New York, 1960 | Zbl

[32] Dunford N., Schwartz J. T., Linear operators, v. I, General theory, Interscience, New York–London, 1958 | Zbl

[33] Chentsov A. G., Morina S. I., Extensions and relaxations, Springer, Dordrecht, 2002 | DOI

[34] Chentsov A. G., “The program iteration method in a game problem of guidance”, Proceedings of the Steklov Institute of Mathematics, 297, suppl. 1 (2017), 43–61 | DOI | DOI | MR

[35] Chentsov A. G., “Stability iterations and an evasion problem with a constraint on the number of switchings”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 23, no. 2, 2017, 285–302 (in Russian) | DOI

[36] Chentsov A. G., “Iterations of stability and the evasion problem with a constraint on the number of switchings of the formed control”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 49 (2017), 17–54 | DOI | Zbl

[37] Kryazhimskii A. V., Chentsov A. G., On the structure of game control in the problems of approach and evasion, Available from VINITI, No 1729-80, Sverdlovsk, 1979 | Zbl

[38] Chentsov A. G., “On the relaxation of a game problem of approach with priority elements”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 27, no. 2, 2021, 281–297 | DOI

[39] Chentsov A. G., “The program iteration method and the relaxation problem”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 27, no. 3, 2021, 211–226 | DOI

[40] Engelking R., General topology, Polish Scientific Publishers, Warsaw, 1977 | Zbl

[41] Chentsov A. G., Khachay D. M., “Program iterations method and relaxation of a pursuit–evasion differential game”, Advanced Control Techniques in Complex Engineering Systems: Theory and Applications, Springer, Cham, 2019, 129–161 | DOI | Zbl