Mots-clés : transformation matrix, Poisson equation
@article{VUU_2021_31_4_a8,
author = {B. Kh. Turmetov and V. V. Karachik},
title = {On solvability of the {Dirichlet} and {Neumann} boundary value problems for the {Poisson} equation with multiple involution},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {651--667},
year = {2021},
volume = {31},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_4_a8/}
}
TY - JOUR AU - B. Kh. Turmetov AU - V. V. Karachik TI - On solvability of the Dirichlet and Neumann boundary value problems for the Poisson equation with multiple involution JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2021 SP - 651 EP - 667 VL - 31 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2021_31_4_a8/ LA - ru ID - VUU_2021_31_4_a8 ER -
%0 Journal Article %A B. Kh. Turmetov %A V. V. Karachik %T On solvability of the Dirichlet and Neumann boundary value problems for the Poisson equation with multiple involution %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2021 %P 651-667 %V 31 %N 4 %U http://geodesic.mathdoc.fr/item/VUU_2021_31_4_a8/ %G ru %F VUU_2021_31_4_a8
B. Kh. Turmetov; V. V. Karachik. On solvability of the Dirichlet and Neumann boundary value problems for the Poisson equation with multiple involution. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 4, pp. 651-667. http://geodesic.mathdoc.fr/item/VUU_2021_31_4_a8/
[1] Carleman T., “Sur la théorie des équations intégrales et ses applications”, Verhandlungen des Internationalen Mathematiker-Kongresse, v. 1, Z{ü}rich, 1932, 138–151 (in French) | Zbl
[2] Karapetiants N., Samko S., Equations with involutive operators, Birkh{ä}user, Boston, 2001 | DOI | Zbl
[3] Litvinchuk G. S., Boundary value problems and singular integral equations with a shift, Nauka, M., 1977
[4] Cabada A., Tojo F. A. F., Differential equations with involutions, Atlantis Press, Paris, 2015 | DOI | Zbl
[5] Andreev A. A., “Analogs of classical boundary value problems for a second-order differential equation with deviating argument”, Differential Equations, 40:8 (2004), 1192–1194 | DOI | MR | Zbl
[6] Andreev A. A., Ogorodnikov E. N., “On the formulation and substantiation of the well-posedness of the initial boundary value problem for a class of nonlocal degenerate equations of hyperbolic type”, Journal of Samara State Technical University. Ser. Physical and Mathematical Sciences, 2006, no. 43, 44–51 (in Russian) | DOI
[7] Ashyralyev A., Sarsenbi A., “Well-posedness of a parabolic equation with involution”, Numerical Functional Analysis and Optimization, 38:10 (2017), 1295–1304 | DOI | MR | Zbl
[8] Ashyralyev A., Sarsenbi A. M., “Well-posedness of an elliptic equation with involution”, Electronic Journal of Differential Equations, 2015:284 (2015), 1–8 https://ejde.math.txstate.edu/Volumes/2015/284/ashyralyev.pdf
[9] Baskakov A. G., Uskova N. B., “Fourier method for first order differential equations with involution and groups of operators”, Ufa Mathematical Journal, 10:3 (2018), 11–34 | DOI | MR | Zbl
[10] Baskakov A. G., Uskova N. B., “Spectral analysis of differential operators with involution and operator groups”, Differential Equations, 54:9 (2018), 1261–1265 | DOI | DOI | MR | Zbl
[11] Burlutskaya M. Sh., “Some properties of functional-differential operators with involution $\nu(x) = 1- x$ and their applications”, Russian Mathematics, 65:5 (2021), 69–76 | DOI | DOI | Zbl
[12] Burlutskaya M. Sh., Khromov A. P., “Mixed problem for simplest hyperbolic first order equations with involution”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 14:1 (2014), 10–20 (in Russian) | DOI | MR | Zbl
[13] Karachik V. V., Sarsenbi A. M., Turmetov B. Kh., “On the solvability of the main boundary value problems for a nonlocal Poisson equation”, Turkish Journal of Mathematics, 43:3 (2019), 1604–1625 | DOI | MR | Zbl
[14] Kirane M., Al-Salti N., “Inverse problems for a nonlocal wave equation with an involution perturbation”, Journal of Nonlinear Sciences and Applications, 9:3 (2016), 1243–1251 | DOI | MR | Zbl
[15] Kritskov L. V., Sadybekov M. A., Sarsenbi A. M., “Properties in $L_p$ of root functions for a nonlocal problem with involution”, Turkish Journal of Mathematics, 43:1 (2019), 393–401 | DOI | MR | Zbl
[16] Lin'kov A. V., “Justification of the Fourier method for boundary value problems with involutive deviation”, Vestn. Samar. Gos. Univ. Mat. Mekh. Fiz. Khim. Biol., 12:2 (1999), 60–66
[17] Sarsenbi A. A., Turmetov B. Kh., “Basis property of a system of eigenfunctions of a second-order differential operator with involution”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 29:2 (2019), 183–196 (in Russian) | DOI | MR | Zbl
[18] Przeworska-Rolewicz D., “Some boundary value problems with transformed argument”, Commentationes Mathematicae, 17:2 (1974), 451–457 https://wydawnictwa.ptm.org.pl/index.php/commentationes-mathematicae/article/viewArticle/5790 | Zbl
[19] Karachik V., Turmetov B., “On solvability of some nonlocal boundary value problems for biharmonic equation”, Mathematica Slovaca, 70:2 (2020), 329–342 | DOI | MR | Zbl
[20] Karachik V., Turmetov B., “Solvability of one nonlocal Dirichlet problem for the Poisson equation”, Novi Sad Journal of Mathematics, 50:1 (2020), 67–88 | DOI | Zbl
[21] Bitsadze A. V., Equations of mathematical physics, Nauka, M., 1982
[22] Evans L. C., Partial differential equations, American Mathematical Society, Providence, 1998 | DOI | Zbl
[23] Sadybekov M. A., Torebek B. T., Turmetov B. Kh., “Representation of Green's function of the Neumann problem for a multi-dimensional ball”, Complex Variables and Elliptic Equations, 61:1 (2016), 104–123 | DOI | MR | Zbl