On solvability of the Dirichlet and Neumann boundary value problems for the Poisson equation with multiple involution
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 4, pp. 651-667 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Transformations of the involution type are considered in the space $R^l$, $l\geq 2$. The matrix properties of these transformations are investigated. The structure of the matrix under consideration is determined and it is proved that the matrix of these transformations is determined by the elements of the first row. Also, the symmetry of the matrix under study is proved. In addition, the eigenvectors and eigenvalues of the matrix under consideration are found explicitly. The inverse matrix is also found and it is proved that the inverse matrix has the same structure as the main matrix. The properties of the nonlocal analogue of the Laplace operator are introduced and studied as applications of the transformations under consideration. For the corresponding nonlocal Poisson equation in the unit ball, the solvability of the Dirichlet and Neumann boundary value problems is investigated. A theorem on the unique solvability of the Dirichlet problem is proved, an explicit form of the Green's function and an integral representation of the solution are constructed, and the order of smoothness of the solution of the problem in the Hölder class is found. Necessary and sufficient conditions for the solvability of the Neumann problem, an explicit form of the Green's function, and the integral representation are also found.
Keywords: multiple involution, nonlocal Laplace operator, Dirichlet problem, Neumann problem.
Mots-clés : transformation matrix, Poisson equation
@article{VUU_2021_31_4_a8,
     author = {B. Kh. Turmetov and V. V. Karachik},
     title = {On solvability of the {Dirichlet} and {Neumann} boundary value problems for the {Poisson} equation with multiple involution},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {651--667},
     year = {2021},
     volume = {31},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_4_a8/}
}
TY  - JOUR
AU  - B. Kh. Turmetov
AU  - V. V. Karachik
TI  - On solvability of the Dirichlet and Neumann boundary value problems for the Poisson equation with multiple involution
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2021
SP  - 651
EP  - 667
VL  - 31
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2021_31_4_a8/
LA  - ru
ID  - VUU_2021_31_4_a8
ER  - 
%0 Journal Article
%A B. Kh. Turmetov
%A V. V. Karachik
%T On solvability of the Dirichlet and Neumann boundary value problems for the Poisson equation with multiple involution
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2021
%P 651-667
%V 31
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2021_31_4_a8/
%G ru
%F VUU_2021_31_4_a8
B. Kh. Turmetov; V. V. Karachik. On solvability of the Dirichlet and Neumann boundary value problems for the Poisson equation with multiple involution. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 4, pp. 651-667. http://geodesic.mathdoc.fr/item/VUU_2021_31_4_a8/

[1] Carleman T., “Sur la théorie des équations intégrales et ses applications”, Verhandlungen des Internationalen Mathematiker-Kongresse, v. 1, Z{ü}rich, 1932, 138–151 (in French) | Zbl

[2] Karapetiants N., Samko S., Equations with involutive operators, Birkh{ä}user, Boston, 2001 | DOI | Zbl

[3] Litvinchuk G. S., Boundary value problems and singular integral equations with a shift, Nauka, M., 1977

[4] Cabada A., Tojo F. A. F., Differential equations with involutions, Atlantis Press, Paris, 2015 | DOI | Zbl

[5] Andreev A. A., “Analogs of classical boundary value problems for a second-order differential equation with deviating argument”, Differential Equations, 40:8 (2004), 1192–1194 | DOI | MR | Zbl

[6] Andreev A. A., Ogorodnikov E. N., “On the formulation and substantiation of the well-posedness of the initial boundary value problem for a class of nonlocal degenerate equations of hyperbolic type”, Journal of Samara State Technical University. Ser. Physical and Mathematical Sciences, 2006, no. 43, 44–51 (in Russian) | DOI

[7] Ashyralyev A., Sarsenbi A., “Well-posedness of a parabolic equation with involution”, Numerical Functional Analysis and Optimization, 38:10 (2017), 1295–1304 | DOI | MR | Zbl

[8] Ashyralyev A., Sarsenbi A. M., “Well-posedness of an elliptic equation with involution”, Electronic Journal of Differential Equations, 2015:284 (2015), 1–8 https://ejde.math.txstate.edu/Volumes/2015/284/ashyralyev.pdf

[9] Baskakov A. G., Uskova N. B., “Fourier method for first order differential equations with involution and groups of operators”, Ufa Mathematical Journal, 10:3 (2018), 11–34 | DOI | MR | Zbl

[10] Baskakov A. G., Uskova N. B., “Spectral analysis of differential operators with involution and operator groups”, Differential Equations, 54:9 (2018), 1261–1265 | DOI | DOI | MR | Zbl

[11] Burlutskaya M. Sh., “Some properties of functional-differential operators with involution $\nu(x) = 1- x$ and their applications”, Russian Mathematics, 65:5 (2021), 69–76 | DOI | DOI | Zbl

[12] Burlutskaya M. Sh., Khromov A. P., “Mixed problem for simplest hyperbolic first order equations with involution”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 14:1 (2014), 10–20 (in Russian) | DOI | MR | Zbl

[13] Karachik V. V., Sarsenbi A. M., Turmetov B. Kh., “On the solvability of the main boundary value problems for a nonlocal Poisson equation”, Turkish Journal of Mathematics, 43:3 (2019), 1604–1625 | DOI | MR | Zbl

[14] Kirane M., Al-Salti N., “Inverse problems for a nonlocal wave equation with an involution perturbation”, Journal of Nonlinear Sciences and Applications, 9:3 (2016), 1243–1251 | DOI | MR | Zbl

[15] Kritskov L. V., Sadybekov M. A., Sarsenbi A. M., “Properties in $L_p$ of root functions for a nonlocal problem with involution”, Turkish Journal of Mathematics, 43:1 (2019), 393–401 | DOI | MR | Zbl

[16] Lin'kov A. V., “Justification of the Fourier method for boundary value problems with involutive deviation”, Vestn. Samar. Gos. Univ. Mat. Mekh. Fiz. Khim. Biol., 12:2 (1999), 60–66

[17] Sarsenbi A. A., Turmetov B. Kh., “Basis property of a system of eigenfunctions of a second-order differential operator with involution”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 29:2 (2019), 183–196 (in Russian) | DOI | MR | Zbl

[18] Przeworska-Rolewicz D., “Some boundary value problems with transformed argument”, Commentationes Mathematicae, 17:2 (1974), 451–457 https://wydawnictwa.ptm.org.pl/index.php/commentationes-mathematicae/article/viewArticle/5790 | Zbl

[19] Karachik V., Turmetov B., “On solvability of some nonlocal boundary value problems for biharmonic equation”, Mathematica Slovaca, 70:2 (2020), 329–342 | DOI | MR | Zbl

[20] Karachik V., Turmetov B., “Solvability of one nonlocal Dirichlet problem for the Poisson equation”, Novi Sad Journal of Mathematics, 50:1 (2020), 67–88 | DOI | Zbl

[21] Bitsadze A. V., Equations of mathematical physics, Nauka, M., 1982

[22] Evans L. C., Partial differential equations, American Mathematical Society, Providence, 1998 | DOI | Zbl

[23] Sadybekov M. A., Torebek B. T., Turmetov B. Kh., “Representation of Green's function of the Neumann problem for a multi-dimensional ball”, Complex Variables and Elliptic Equations, 61:1 (2016), 104–123 | DOI | MR | Zbl