Infinite Schrödinger networks
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 4, pp. 640-650 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Finite-difference models of partial differential equations such as Laplace or Poisson equations lead to a finite network. A discretized equation on an unbounded plane or space results in an infinite network. In an infinite network, Schrödinger operator (perturbed Laplace operator, $q$-Laplace) is defined to develop a discrete potential theory which has a model in the Schrödinger equation in the Euclidean spaces. The relation between Laplace operator $\Delta$-theory and the $\Delta_q$-theory is investigated. In the $\Delta_q$-theory the Poisson equation is solved if the network is a tree and a canonical representation for non-negative $q$-superharmonic functions is obtained in general case.
Keywords: $q$-harmonic functions, $q$-superharmonic functions, Schrödinger network, hyperbolic Schrödinger network, parabolic Schrödinger network, integral representation.
@article{VUU_2021_31_4_a7,
     author = {N. Nathiya and Ch. Amulya Smyrna},
     title = {Infinite {Schr\"odinger} networks},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {640--650},
     year = {2021},
     volume = {31},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_4_a7/}
}
TY  - JOUR
AU  - N. Nathiya
AU  - Ch. Amulya Smyrna
TI  - Infinite Schrödinger networks
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2021
SP  - 640
EP  - 650
VL  - 31
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2021_31_4_a7/
LA  - en
ID  - VUU_2021_31_4_a7
ER  - 
%0 Journal Article
%A N. Nathiya
%A Ch. Amulya Smyrna
%T Infinite Schrödinger networks
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2021
%P 640-650
%V 31
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2021_31_4_a7/
%G en
%F VUU_2021_31_4_a7
N. Nathiya; Ch. Amulya Smyrna. Infinite Schrödinger networks. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 4, pp. 640-650. http://geodesic.mathdoc.fr/item/VUU_2021_31_4_a7/

[1] Carmona Á., Encinas A. M., Mitjana M., “Potential theory on finite networks”, Electronic Notes in Discrete Mathematics, 46 (2014), 113–120 | DOI | MR | Zbl

[2] Gantmacher F. R., The theory of matrices, v. 1, Chelsea Publishing Company, New York, 1964

[3] Royden H. L., “The equation $\Delta u = Pu$, and the classification of open Riemann surfaces”, Annales Academiae Scientiarum Fennicae. Series A I, 271 (1959), 1–26 | Zbl

[4] Cartier P., “Fonctions harmoniques sur un arbre”, Symposia Mathematica, 9, 1972, 203–270 (in French) | Zbl

[5] Yamasaki M., “Discrete Dirichlet potentials on an infinite network”, Potential theory and its related fields, 610, Institute of Mathematical Analysis, Kyoto University, 1987, 51–66 http://hdl.handle.net/2433/99750

[6] Soardi P. M., Potential theory on infinite networks, Springer, Berlin, 1994 | DOI | Zbl

[7] Cohen J. M., Colonna F., Singman D., “The distribution of radial eigenvalues of the Euclidean Laplacian on homogeneous isotropic trees”, Complex Analysis and its Synergies, 7:2 (2021), 21 | DOI

[8] Soardi P. M., Woess W., “Uniqueness of currents in infinite resistive networks”, Discrete Applied Mathematics, 31:1 (1991), 37–49 | DOI | MR | Zbl

[9] Picardello M. A., Woess W., “Martin boundaries of Cartesian products of Markov chains”, Nagoya Mathematical Journal, 128 (1992), 153–169 | DOI | MR | Zbl

[10] Anandam V., Harmonic functions and potentials on finite or infinite networks, Springer, Berlin, 2011 | DOI | Zbl

[11] Abodayeh K., Anandam V., “Potential-theoretic study of functions on an infinite network”, Hokkaido Mathematical Journal, 37:1 (2008), 59–73 | DOI | MR | Zbl

[12] Hedenmalm H., Montes–Rodríguez A., “Heisenberg uniqueness pairs and the Klein–Gordon equation”, Annals of Mathematics, 173:3 (2011), 1507–1527 | DOI | MR | Zbl

[13] Alyusof R., Colonna F., “Weighted composition operators from Banach spaces of holomorphic functions to weighted-type Banach spaces on the unit ball in $C^n$”, Complex Analysis and Operator Theory, 14:1 (2020), 3 | DOI | MR | Zbl

[14] Simon B., Operator theory: a comprehensive course in analysis, v. 4, American Mathematical Society, Providence, 2015 | DOI | Zbl

[15] Colonna F., Tjani M., “Essential norms of weighted composition operators from reproducing kernel Hilbert spaces into weighted-type spaces”, Houston Journal of Mathematics, 42:3 (2016), 877–903 | MR | Zbl

[16] Colonna F., Tjani M., “Operator norms and essential norms of weighted composition operators between Banach spaces of analytic functions”, Journal of Mathematical Analysis and Application, 434:1 (2016), 93–124 | DOI | Zbl

[17] Anandam V., Damlakhi M., “Perturbed Laplace operators on finite networks”, Revue Roumaine de Mathématiques Pures et Appliquées, 61:2 (2016), 75–92 | Zbl

[18] Bendito E., Carmona Á., Encinas A. M., “Potential theory for Schr{ö}dinger operators on finite networks”, Revista Matemática Iberoamericana, 21:3 (2005), 717–818 | DOI

[19] Premalatha, Nathiya N., “Unique integral represetation for the class of balanced separately superharmonic functions in a product network”, Mathematical Reports, 18(68):3 (2016), 299–313 | MR | Zbl

[20] Abodayeh K., Anandam V., “Quasi-bounded supersolutions of discrete Schr{ö}dinger equations”, Applied Mathematical Sciences, 10:34 (2016), 1693–1704 | DOI

[21] Abodayeh K., Anandam V., “Schr{ö}dinger networks and their Cartesian products”, Mathematical Methods in the Applied Sciences, 44:6 (2020), 4342–4347 | DOI | MR