@article{VUU_2021_31_4_a7,
author = {N. Nathiya and Ch. Amulya Smyrna},
title = {Infinite {Schr\"odinger} networks},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {640--650},
year = {2021},
volume = {31},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_4_a7/}
}
N. Nathiya; Ch. Amulya Smyrna. Infinite Schrödinger networks. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 4, pp. 640-650. http://geodesic.mathdoc.fr/item/VUU_2021_31_4_a7/
[1] Carmona Á., Encinas A. M., Mitjana M., “Potential theory on finite networks”, Electronic Notes in Discrete Mathematics, 46 (2014), 113–120 | DOI | MR | Zbl
[2] Gantmacher F. R., The theory of matrices, v. 1, Chelsea Publishing Company, New York, 1964
[3] Royden H. L., “The equation $\Delta u = Pu$, and the classification of open Riemann surfaces”, Annales Academiae Scientiarum Fennicae. Series A I, 271 (1959), 1–26 | Zbl
[4] Cartier P., “Fonctions harmoniques sur un arbre”, Symposia Mathematica, 9, 1972, 203–270 (in French) | Zbl
[5] Yamasaki M., “Discrete Dirichlet potentials on an infinite network”, Potential theory and its related fields, 610, Institute of Mathematical Analysis, Kyoto University, 1987, 51–66 http://hdl.handle.net/2433/99750
[6] Soardi P. M., Potential theory on infinite networks, Springer, Berlin, 1994 | DOI | Zbl
[7] Cohen J. M., Colonna F., Singman D., “The distribution of radial eigenvalues of the Euclidean Laplacian on homogeneous isotropic trees”, Complex Analysis and its Synergies, 7:2 (2021), 21 | DOI
[8] Soardi P. M., Woess W., “Uniqueness of currents in infinite resistive networks”, Discrete Applied Mathematics, 31:1 (1991), 37–49 | DOI | MR | Zbl
[9] Picardello M. A., Woess W., “Martin boundaries of Cartesian products of Markov chains”, Nagoya Mathematical Journal, 128 (1992), 153–169 | DOI | MR | Zbl
[10] Anandam V., Harmonic functions and potentials on finite or infinite networks, Springer, Berlin, 2011 | DOI | Zbl
[11] Abodayeh K., Anandam V., “Potential-theoretic study of functions on an infinite network”, Hokkaido Mathematical Journal, 37:1 (2008), 59–73 | DOI | MR | Zbl
[12] Hedenmalm H., Montes–Rodríguez A., “Heisenberg uniqueness pairs and the Klein–Gordon equation”, Annals of Mathematics, 173:3 (2011), 1507–1527 | DOI | MR | Zbl
[13] Alyusof R., Colonna F., “Weighted composition operators from Banach spaces of holomorphic functions to weighted-type Banach spaces on the unit ball in $C^n$”, Complex Analysis and Operator Theory, 14:1 (2020), 3 | DOI | MR | Zbl
[14] Simon B., Operator theory: a comprehensive course in analysis, v. 4, American Mathematical Society, Providence, 2015 | DOI | Zbl
[15] Colonna F., Tjani M., “Essential norms of weighted composition operators from reproducing kernel Hilbert spaces into weighted-type spaces”, Houston Journal of Mathematics, 42:3 (2016), 877–903 | MR | Zbl
[16] Colonna F., Tjani M., “Operator norms and essential norms of weighted composition operators between Banach spaces of analytic functions”, Journal of Mathematical Analysis and Application, 434:1 (2016), 93–124 | DOI | Zbl
[17] Anandam V., Damlakhi M., “Perturbed Laplace operators on finite networks”, Revue Roumaine de Mathématiques Pures et Appliquées, 61:2 (2016), 75–92 | Zbl
[18] Bendito E., Carmona Á., Encinas A. M., “Potential theory for Schr{ö}dinger operators on finite networks”, Revista Matemática Iberoamericana, 21:3 (2005), 717–818 | DOI
[19] Premalatha, Nathiya N., “Unique integral represetation for the class of balanced separately superharmonic functions in a product network”, Mathematical Reports, 18(68):3 (2016), 299–313 | MR | Zbl
[20] Abodayeh K., Anandam V., “Quasi-bounded supersolutions of discrete Schr{ö}dinger equations”, Applied Mathematical Sciences, 10:34 (2016), 1693–1704 | DOI
[21] Abodayeh K., Anandam V., “Schr{ö}dinger networks and their Cartesian products”, Mathematical Methods in the Applied Sciences, 44:6 (2020), 4342–4347 | DOI | MR