Mots-clés : Liouville type theorem, Liouville function.
@article{VUU_2021_31_4_a6,
author = {A. G. Losev and V. V. Filatov},
title = {Liouville type theorems for solutions of semilinear equations on non-compact {Riemannian} manifolds},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {629--639},
year = {2021},
volume = {31},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_4_a6/}
}
TY - JOUR AU - A. G. Losev AU - V. V. Filatov TI - Liouville type theorems for solutions of semilinear equations on non-compact Riemannian manifolds JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2021 SP - 629 EP - 639 VL - 31 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2021_31_4_a6/ LA - en ID - VUU_2021_31_4_a6 ER -
%0 Journal Article %A A. G. Losev %A V. V. Filatov %T Liouville type theorems for solutions of semilinear equations on non-compact Riemannian manifolds %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2021 %P 629-639 %V 31 %N 4 %U http://geodesic.mathdoc.fr/item/VUU_2021_31_4_a6/ %G en %F VUU_2021_31_4_a6
A. G. Losev; V. V. Filatov. Liouville type theorems for solutions of semilinear equations on non-compact Riemannian manifolds. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 4, pp. 629-639. http://geodesic.mathdoc.fr/item/VUU_2021_31_4_a6/
[1] Caristi G., Mitidieri E., Pohozaev S. I., “Some Liouville theorems for quasilinear elliptic inequalities”, Doklady Mathematics, 79:1 (2009), 118–124 | DOI | MR | Zbl
[2] Cheng S. Y., Yau S. T., “Differential equations on Riemannian manifolds and their geometric applications”, Communications on Pure and Applied Mathematics, 28:3 (1975), 333–354 | DOI | MR | Zbl
[3] Grigor'yan A., “Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds”, Bulletin of the American Mathematical Society, 36:2 (1999), 135–249 | DOI | Zbl
[4] Grigor'yan A. A., “On the existence of positive fundamental solutions of the Laplace equation on Riemannian manifolds”, Mathematics of the USSR-Sbornik, 56:2 (1987), 349–358 | DOI | Zbl
[5] Grigor'yan A., Hansen W., “A Liouville property for Schr{ö}dinger operators”, Mathematische Annalen, 312:4 (1998), 659–716 | DOI | MR | Zbl
[6] Grigor'yan A. A., Losev A. G., “Dimension of spaces of solutions of the Schr{ö}dinger equation on noncompact Riemannian manifolds”, Mathematical Physics and Computer Simulation, 20:3 (2017), 34–42 (in Russian) | DOI | MR
[7] Grigor'yan A., Sun Y., “On positive solutions of semi-linear elliptic inequalities on Riemannian manifolds”, Calculus of Variations and Partial Differential Equations, 58:6 (2019), 207 | DOI | Zbl
[8] Grigor'yan A., Verbitsky I., “Pointwise estimates of solutions to semilinear elliptic equations and inequalities”, Journal d'Analyse Mathématique, 137:2 (2019), 559–601 | DOI | Zbl
[9] Keselman V. M., Mathematical Physics and Computer Simulation, 22:2 (2019), 21–32 (in Russian) | DOI | MR
[10] Korol'kov S. A., Harmonic functions on Riemannian manifolds with ends, Abstract of Cand. Sci. (Phys.-Math.) Dissertation, Kazan, 2009, 18 pp. (In Russian)
[11] Korolkov S. A., Losev A. G., “Generalized harmonic functions of Riemannian manifolds with ends”, Mathematische Zeitschrift, 272:1–2 (2012), 459–472 | DOI | MR | Zbl
[12] Li P., Tam L.-F., “Harmonic functions and the structure of complete manifolds”, Journal of Differential Geometry, 35:2 (1992), 359–383 | DOI | MR | Zbl
[13] Losev A. G., Filatov V. V., “On capacitary characteristics of noncompact Riemannian manifolds”, Russian Mathematics, 65:3 (2021), 61–67 | DOI | DOI | Zbl
[14] Mazepa E. A., “On the solvability of boundary value problems for quasilinear elliptic equations on noncompact Riemannian manifolds”, Sibirskie Élektronnye Matematicheskie Izvestiya, 13 (2016), 1026–1034 (in Russian) | DOI | MR | Zbl
[15] Mazepa E. A., “The Liouville property and boundary value problems for semilinear elliptic equations on noncompact Riemannian manifolds”, Siberian Mathematical Journal, 53:1 (2012), 134–145 | DOI | MR | Zbl
[16] Miklyukov V. M., “Some criteria for parabolicity and hyperbolicity of the boundary sets of surfaces”, Izvestiya: Mathematics, 60:4 (1996), 763–809 | DOI | DOI | MR | Zbl
[17] Murata M., Tsuchida T., “Uniqueness of $L^1$ harmonic functions on rotationally symmetric Riemannian manifolds”, Kodai Mathematical Journal, 37:1 (2014), 1–15 | DOI | MR | Zbl
[18] Sun Y., “Uniqueness result for non-negative solutions of semi-linear inequalities on Riemannian manifolds”, Journal of Mathematical Analysis and Applications, 419:1 (2014), 643–661 | DOI | MR | Zbl
[19] Yau S.-T., “Some function-theoretic properties of complete Riemannian manifold and their applications to geometry”, Indiana University Mathematics Journal, 25:7 (1976), 659–670 http://www.jstor.org/stable/24891285 | DOI | MR | Zbl