Mots-clés : information sets
@article{VUU_2021_31_4_a2,
author = {B. I. Ananyev},
title = {On some estimation problems for nonlinear dynamic systems},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {562--577},
year = {2021},
volume = {31},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_4_a2/}
}
TY - JOUR AU - B. I. Ananyev TI - On some estimation problems for nonlinear dynamic systems JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2021 SP - 562 EP - 577 VL - 31 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2021_31_4_a2/ LA - ru ID - VUU_2021_31_4_a2 ER -
B. I. Ananyev. On some estimation problems for nonlinear dynamic systems. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 4, pp. 562-577. http://geodesic.mathdoc.fr/item/VUU_2021_31_4_a2/
[1] Schweppe F. C., “Recursive state estimation: unknown but bounded errors and system inputs”, IEEE Transactions on Automatic Control, 13:1 (1968), 22–28 | DOI
[2] Bertsecas D. P., Rhodes I. B., “Recursive state estimation for a set-membership description of uncertainty”, IEEE Transactions on Automatic Control, 16:2 (1971), 117–128 | DOI | MR
[3] Kurzhanski A. B., Control and estimation under uncertainty, Nauka, M., 1977
[4] Kurzhanski A., Varaiya P., Dynamics and control of trajectory tubes: Theory and computation, Birkh{ä}user Basel, Boston, 2014 | DOI | Zbl
[5] Chernous'ko F. L., Estimation of states for dynamical systems. Method of ellipsoids, Nauka, M., 1988
[6] Keesman K. J., Stappers R., “Nonlinear set-membership estimation: A support vector machine approach”, Journal of Inverse and Ill-posed Problems, 12:1 (2004), 27–41 | DOI | MR | Zbl
[7] Farina F., Garulli A., Giannitrapani A., “Distributed interpolatory algorithms for set membership estimation”, IEEE Transactions on Automatic Control, 64:9 (2018), 3817–3822 | DOI
[8] Liu Y., Zhao Y., Wu F., “Extended ellipsoidal outer-bounding set-membership estimation for nonlinear discrete-time systems with unknown-but-bounded disturbances”, Discrete Dynamics in Nature and Society, 2016 (2016), 1–11 | DOI
[9] Coddington E. A., Levinson N., Theory of ordinary differential equations, McGraw-Hill, New York, 1955 | Zbl
[10] Subbotin A. I., Minimax inequalities and Gamilton–Jacobi equations, Nauka, M., 1991
[11] Tveito A., Winther R., Introduction to partial differential equations: A computational approach, Springer, New York, 1998 | Zbl
[12] Hartman P., Ordinary differential equations, Wiley, New York, 1964 | Zbl
[13] Krasovskii A. A., “Nonclassical target functionals and optimal control problems”, Izvestiya Akademii Nauk SSSR. Tekhnicheskaya Kibernetika, 1992, no. 1, 3–41