@article{VUU_2021_31_4_a1,
author = {Yu. V. Averboukh},
title = {Approximation of value function of differential game with minimal cost},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {536--561},
year = {2021},
volume = {31},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_4_a1/}
}
TY - JOUR AU - Yu. V. Averboukh TI - Approximation of value function of differential game with minimal cost JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2021 SP - 536 EP - 561 VL - 31 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2021_31_4_a1/ LA - en ID - VUU_2021_31_4_a1 ER -
Yu. V. Averboukh. Approximation of value function of differential game with minimal cost. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 4, pp. 536-561. http://geodesic.mathdoc.fr/item/VUU_2021_31_4_a1/
[1] Aliprantis C. D., Border K. C., Infinite dimensional analysis: A Hitchhiker's guide, Springer, Berlin, 2006 | DOI
[2] Averboukh Y., “Approximate solutions of continuous-time stochastic games”, SIAM Journal on Control and Optimization, 54:5 (2016), 2629–2649 | DOI | MR | Zbl
[3] Barron E. N., “Differential games in $L^\infty$”, Dynamic Games and Applications, 7:2 (2017), 157–184 | DOI | MR | Zbl
[4] Barron E. N., “Differential games with maximum cost”, Nonlinear Analysis: Theory, Methods and Applications, 14:11 (1990), 971–989 | DOI | MR | Zbl
[5] Bayraktar E., Huang Y.-J., “On the multidimensional controller-and-stopper games”, SIAM Journal on Control and Optimization, 51:2 (2013), 1263–1297 | DOI | MR | Zbl
[6] Bayraktar E., Li J., “On the controller-stopper problems with controlled jumps”, Applied Mathematics and Optimization, 80:1 (2019), 195–222 | DOI | MR | Zbl
[7] Bensoussan A., Friedman A., “Nonlinear variational inequalities and differential games with stopping times”, Journal of Functional Analysis, 16:3 (1974), 305–352 | DOI | Zbl
[8] Dumitrescu R., Quenez M.-C., Sulem A., “Mixed generalized Dynkin game and stochastic control in a Markovian framework”, Stochastics, 89:1 (2017), 400–429 | DOI | MR | Zbl
[9] Elliott R. J., Kalton N. J., “Values in differential games”, Bulletin of the American Mathematical Society, 78:3 (1972), 427–431 | DOI | MR | Zbl
[10] Gensbittel F., Gr{ü}n C., “Zero-sum stopping games with asymmetric information”, Mathematics of Operations Research, 44:1 (2019), 277–302 | DOI | MR | Zbl
[11] Festa A., Vinter R. B., “Decomposition of differential games with multiple targets”, Journal of Optimization Theory and Applications, 169 (2016), 848–875 | DOI | MR | Zbl
[12] Gr{ü}n C., “On Dynkin games with incomplete information”, SIAM Journal on Control and Optimization, 51:5 (2013), 4039–4065 | DOI | MR | Zbl
[13] Hamadène S., Zhang J., “The continuous time nonzero-sum Dynkin game problem and application in game options”, SIAM Journal on Control and Optimization, 48:5 (2010), 3659–3669 | DOI | Zbl
[14] Hernandez-Hernandez D., Simon R. S., Zervos M., “A zero-sum game between a singular stochastic controller and a discretionary stopper”, The Annals of Applied Probability, 25:1 (2015), 46–80 | DOI | MR | Zbl
[15] Kallenberg O., Foundations of modern probability, Springer, Cham, 2021 | DOI | Zbl
[16] Karatzas I., Zamfirescu I.-M., “Martingale approach to stochastic differential games of control and stopping”, The Annals of Probability, 36:4 (2008), 1495–1527 | DOI | MR | Zbl
[17] Kobylanski M., Quenez M.-C., de Campagnolle M. R., “Dynkin games in a general framework”, Stochastics, 86:2 (2014), 304–329 | DOI | MR | Zbl
[18] Kolokoltsov V. N., Markov processes, semigroups and generators, De Gryuter, Berlin, 2011 | DOI
[19] Kostyunin S. Yu., Palestini A., Shevkoplyas E. V., “On a exhaustible resource extraction differential game with random terminal instants”, Vestnik Sankt-Peterburgskogo Universiteta. Ser. 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2013, no. 3, 73–82 (in Russian)
[20] Kostyunin S., Palestini A., Shevkoplyas E., “On a nonrenewable resource extraction game played by asymmetric firms”, Journal of Optimization Theory and Applications, 163:2 (2014), 660–673 | DOI | MR | Zbl
[21] Krasovskii N. N., Kotel'nikova A. N., “Unification of differential games, generalized solutions of the Hamilton–Jacobi equations, and a stochastic guide”, Differential Equations, 45:11 (2009), 1653–1668 | DOI | MR | Zbl
[22] Krasovskii N. N., Kotel'nikova A. N., “An approach-evasion differential game: stochastic guide”, Proceedings of the Steklov Institute of Mathematics, 269, suppl. 1 (2010), 191–213 | DOI | Zbl
[23] Krasovskii N. N., Kotel'nikova A. N., “On a differential interception game”, Proceedings of the Steklov Institute of Mathematics, 268:1 (2010), 161–206 | DOI | MR | Zbl
[24] Krasovskii N. N., Subbotin A. I., Game-theoretical control problems, Springer, New York, 1988 | Zbl
[25] Krylov N. V., “Control of Markov processes and $W$-spaces”, Mathematics of the USSR-Izvestiya, 5:1 (1971), 233–266 | DOI
[26] Laraki R., Solan E., “The value of zero-sum stopping games in continuous time”, SIAM Journal on Control and Optimization, 43:5 (2005), 1913–1922 | DOI | MR | Zbl
[27] Mitchell I. M., Bayen A. M., Tomlin C. J., “A time-dependent Hamilton–Jacobi formulation of reachable sets for continuous dynamic games”, IEEE Transactions on Automatic Control, 50:7 (2005), 947–957 | DOI | MR | Zbl
[28] Nutz M., Zhang J., “Optimal stopping under adverse nonlinear expectation and related games”, The Annals of Applied Probability, 25:5 (2015), 2503–2534 | DOI | MR | Zbl
[29] Subbotin A. I., Generalized solutions of first order PDEs. The dynamical optimization perspective, Birkh{ä}user, Boston, 1995 | DOI
[30] Subbotin A. I., Chentsov A. G., Optimization of guarantee in control problems, Nauka, M., 1981
[31] Varaiya P., Lin J., “Existence of saddle points in differential games”, SIAM Journal on Control, 7:1 (1969), 142–157 | DOI