Approximation of value function of differential game with minimal cost
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 4, pp. 536-561 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is concerned with the approximation of the value function of the zero-sum differential game with the minimal cost, i. e., the differential game with the payoff functional determined by the minimization of some quantity along the trajectory by the solutions of continuous-time stochastic games with the stopping governed by one player. Notice that the value function of the auxiliary continuous-time stochastic game is described by the Isaacs–Bellman equation with additional inequality constraints. The Isaacs–Bellman equation is a parabolic PDE for the case of stochastic differential game and it takes a form of system of ODEs for the case of continuous-time Markov game. The approximation developed in the paper is based on the concept of the stochastic guide first proposed by Krasovskii and Kotelnikova.
Keywords: differential games with minimal cost, stochastic guide, approximation of the value function, Isaacs–Bellman equation.
@article{VUU_2021_31_4_a1,
     author = {Yu. V. Averboukh},
     title = {Approximation of value function of differential game with minimal cost},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {536--561},
     year = {2021},
     volume = {31},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_4_a1/}
}
TY  - JOUR
AU  - Yu. V. Averboukh
TI  - Approximation of value function of differential game with minimal cost
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2021
SP  - 536
EP  - 561
VL  - 31
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2021_31_4_a1/
LA  - en
ID  - VUU_2021_31_4_a1
ER  - 
%0 Journal Article
%A Yu. V. Averboukh
%T Approximation of value function of differential game with minimal cost
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2021
%P 536-561
%V 31
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2021_31_4_a1/
%G en
%F VUU_2021_31_4_a1
Yu. V. Averboukh. Approximation of value function of differential game with minimal cost. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 4, pp. 536-561. http://geodesic.mathdoc.fr/item/VUU_2021_31_4_a1/

[1] Aliprantis C. D., Border K. C., Infinite dimensional analysis: A Hitchhiker's guide, Springer, Berlin, 2006 | DOI

[2] Averboukh Y., “Approximate solutions of continuous-time stochastic games”, SIAM Journal on Control and Optimization, 54:5 (2016), 2629–2649 | DOI | MR | Zbl

[3] Barron E. N., “Differential games in $L^\infty$”, Dynamic Games and Applications, 7:2 (2017), 157–184 | DOI | MR | Zbl

[4] Barron E. N., “Differential games with maximum cost”, Nonlinear Analysis: Theory, Methods and Applications, 14:11 (1990), 971–989 | DOI | MR | Zbl

[5] Bayraktar E., Huang Y.-J., “On the multidimensional controller-and-stopper games”, SIAM Journal on Control and Optimization, 51:2 (2013), 1263–1297 | DOI | MR | Zbl

[6] Bayraktar E., Li J., “On the controller-stopper problems with controlled jumps”, Applied Mathematics and Optimization, 80:1 (2019), 195–222 | DOI | MR | Zbl

[7] Bensoussan A., Friedman A., “Nonlinear variational inequalities and differential games with stopping times”, Journal of Functional Analysis, 16:3 (1974), 305–352 | DOI | Zbl

[8] Dumitrescu R., Quenez M.-C., Sulem A., “Mixed generalized Dynkin game and stochastic control in a Markovian framework”, Stochastics, 89:1 (2017), 400–429 | DOI | MR | Zbl

[9] Elliott R. J., Kalton N. J., “Values in differential games”, Bulletin of the American Mathematical Society, 78:3 (1972), 427–431 | DOI | MR | Zbl

[10] Gensbittel F., Gr{ü}n C., “Zero-sum stopping games with asymmetric information”, Mathematics of Operations Research, 44:1 (2019), 277–302 | DOI | MR | Zbl

[11] Festa A., Vinter R. B., “Decomposition of differential games with multiple targets”, Journal of Optimization Theory and Applications, 169 (2016), 848–875 | DOI | MR | Zbl

[12] Gr{ü}n C., “On Dynkin games with incomplete information”, SIAM Journal on Control and Optimization, 51:5 (2013), 4039–4065 | DOI | MR | Zbl

[13] Hamadène S., Zhang J., “The continuous time nonzero-sum Dynkin game problem and application in game options”, SIAM Journal on Control and Optimization, 48:5 (2010), 3659–3669 | DOI | Zbl

[14] Hernandez-Hernandez D., Simon R. S., Zervos M., “A zero-sum game between a singular stochastic controller and a discretionary stopper”, The Annals of Applied Probability, 25:1 (2015), 46–80 | DOI | MR | Zbl

[15] Kallenberg O., Foundations of modern probability, Springer, Cham, 2021 | DOI | Zbl

[16] Karatzas I., Zamfirescu I.-M., “Martingale approach to stochastic differential games of control and stopping”, The Annals of Probability, 36:4 (2008), 1495–1527 | DOI | MR | Zbl

[17] Kobylanski M., Quenez M.-C., de Campagnolle M. R., “Dynkin games in a general framework”, Stochastics, 86:2 (2014), 304–329 | DOI | MR | Zbl

[18] Kolokoltsov V. N., Markov processes, semigroups and generators, De Gryuter, Berlin, 2011 | DOI

[19] Kostyunin S. Yu., Palestini A., Shevkoplyas E. V., “On a exhaustible resource extraction differential game with random terminal instants”, Vestnik Sankt-Peterburgskogo Universiteta. Ser. 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2013, no. 3, 73–82 (in Russian)

[20] Kostyunin S., Palestini A., Shevkoplyas E., “On a nonrenewable resource extraction game played by asymmetric firms”, Journal of Optimization Theory and Applications, 163:2 (2014), 660–673 | DOI | MR | Zbl

[21] Krasovskii N. N., Kotel'nikova A. N., “Unification of differential games, generalized solutions of the Hamilton–Jacobi equations, and a stochastic guide”, Differential Equations, 45:11 (2009), 1653–1668 | DOI | MR | Zbl

[22] Krasovskii N. N., Kotel'nikova A. N., “An approach-evasion differential game: stochastic guide”, Proceedings of the Steklov Institute of Mathematics, 269, suppl. 1 (2010), 191–213 | DOI | Zbl

[23] Krasovskii N. N., Kotel'nikova A. N., “On a differential interception game”, Proceedings of the Steklov Institute of Mathematics, 268:1 (2010), 161–206 | DOI | MR | Zbl

[24] Krasovskii N. N., Subbotin A. I., Game-theoretical control problems, Springer, New York, 1988 | Zbl

[25] Krylov N. V., “Control of Markov processes and $W$-spaces”, Mathematics of the USSR-Izvestiya, 5:1 (1971), 233–266 | DOI

[26] Laraki R., Solan E., “The value of zero-sum stopping games in continuous time”, SIAM Journal on Control and Optimization, 43:5 (2005), 1913–1922 | DOI | MR | Zbl

[27] Mitchell I. M., Bayen A. M., Tomlin C. J., “A time-dependent Hamilton–Jacobi formulation of reachable sets for continuous dynamic games”, IEEE Transactions on Automatic Control, 50:7 (2005), 947–957 | DOI | MR | Zbl

[28] Nutz M., Zhang J., “Optimal stopping under adverse nonlinear expectation and related games”, The Annals of Applied Probability, 25:5 (2015), 2503–2534 | DOI | MR | Zbl

[29] Subbotin A. I., Generalized solutions of first order PDEs. The dynamical optimization perspective, Birkh{ä}user, Boston, 1995 | DOI

[30] Subbotin A. I., Chentsov A. G., Optimization of guarantee in control problems, Nauka, M., 1981

[31] Varaiya P., Lin J., “Existence of saddle points in differential games”, SIAM Journal on Control, 7:1 (1969), 142–157 | DOI