@article{VUU_2021_31_4_a0,
author = {B. I. Abdullaev and S. A. Imomkulov and R. A. Sharipov},
title = {Structure of singular sets of some classes of subharmonic functions},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {519--535},
year = {2021},
volume = {31},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_4_a0/}
}
TY - JOUR AU - B. I. Abdullaev AU - S. A. Imomkulov AU - R. A. Sharipov TI - Structure of singular sets of some classes of subharmonic functions JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2021 SP - 519 EP - 535 VL - 31 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2021_31_4_a0/ LA - ru ID - VUU_2021_31_4_a0 ER -
%0 Journal Article %A B. I. Abdullaev %A S. A. Imomkulov %A R. A. Sharipov %T Structure of singular sets of some classes of subharmonic functions %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2021 %P 519-535 %V 31 %N 4 %U http://geodesic.mathdoc.fr/item/VUU_2021_31_4_a0/ %G ru %F VUU_2021_31_4_a0
B. I. Abdullaev; S. A. Imomkulov; R. A. Sharipov. Structure of singular sets of some classes of subharmonic functions. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 4, pp. 519-535. http://geodesic.mathdoc.fr/item/VUU_2021_31_4_a0/
[1] Abdullaev B. I., “$m-wsh$ functions”, Doklady Akademii Nauk Respubliki Uzbekistan, 2012, no. 5, 15–18 (in Russian) | Zbl
[2] Abdullaev B. I., Imomkulov S. A., “Removable singularities of subharmonic functions in the level $L_{p}$ and $L_{p}^{1}$”, Uzbekskii Matematicheskii Zhurnal, 1997, no. 4, 10–14 (in Russian) | Zbl
[3] Abdullaev B. I., Yarmetov Zh. R., “On singular sets of subsolutions of elliptic operators”, Vestnik Krasnoyarskogo Gosudarstvennogo Universiteta, 2006, no. 9, 74–80 (in Russian)
[4] Vaisova M. D., “Potential theory in the class of $\alpha$-subharmonic functions”, Uzbek Mathematical Journal, 3 (2016), 46–52 (in Russian) | MR
[5] Vitushkin A. G., “A set of positive length having a zero analytic capacity”, Doklady Akademii Nauk SSSR, 127 (1959), 246–249 (in Russian) | Zbl
[6] Dolzhenko E. P., “On the representation of continuous harmonic functions in the form of potentials”, Izvestiya Akademii Nauk SSSR. Ser. Matematicheskaya, 28:5 (1964), 1113–1130 (in Russian) | Zbl
[7] Dolzhenko E. P., “On the singularities of continuous harmonic functions”, Izvestiya Akademii Nauk SSSR. Ser. Matematicheskaya, 28:6 (1964), 1251–1270 | Zbl
[8] Maz'ya V. G., “Classes of sets and measures connected with embedding theorems”, Embedding theorems and their applications, Nauka, M., 1970, 142–159
[9] Maz'ya V. G., Khavin V. P., “Non-linear potential theory”, Russian Mathematical Surveys, 27:6 (1972), 71–148 | DOI | MR | Zbl
[10] Maz'ja V. G., “On $(p,l)$-capacity, embedding theorems, and the spectrum of a selfadjoint elliptic operator”, Mathematics of the USSR-Izvestiya, 7:2 (1973), 357–387 | DOI | Zbl
[11] Mel'nikov M. S., Sinanyan S. O., “Aspects of approximation theory for functions of one complex variable”, Journal of Soviet Mathematics, 5:5 (1976), 688–752 | DOI | Zbl | Zbl
[12] Pokrovskii A. V., “Removable singularities of solutions of non-linear elliptic equations”, Russian Mathematical Surveys, 62:3 (2007), 629–630 | DOI | DOI | MR | Zbl
[13] Sadullaev A., Abdullaev B., “Potential theory in the class of $m$-subharmonic functions”, Proceedings of the Steklov Institute of Mathematics, 279:1 (2012), 155–180 | DOI | MR | Zbl
[14] Sadullaev A., “Rational approximation and pluripolar sets”, Mathematics of the USSR-Sbornik, 47:1 (1984), 91–113 | DOI | MR | Zbl | Zbl
[15] Sadullaev A. S., Yarmetov Zh. R., “Removable singularities of plurisubharmonic functions of class $Lip_{\alpha }$”, Sbornik: Mathematics, 186:1 (1995), 133–150 | DOI | MR | Zbl
[16] Sadullaev A. S., Abdullaev B., “A removable singularity of the bounded above $m-wsh$ functions”, Doklady Akademii Nauk Respubliki Uzbekistan, 2015, no. 5, 12–14 (in Russian)
[17] Sadullaev A. S., Abdullaev B. I., “Removable singularity $m-wsh$ functions of the class $Lip_{\alpha}$”, Vestnik NUUz, 2015, no. 1, 4–6 (in Russian)
[18] Sadullaev A. S., Abdullaev B. I., Sharipov R. A., “A removable singularity of the bounded above $m-sh$ functions”, Uzbek Mathematical Journal, 2016, no. 3, 118–124 (in Russian)
[19] Khusanov Z. Kh., “Capacity properties of $q$-subharmonic functions. I”, Izvestiya Akademii Nauk UzSSR. Ser. Fiz.-Mat. Nauk, 1990, no. 1, 41–45 (in Russian) | Zbl
[20] Khusanov Z. Kh., “Capacity properties of $q$-subharmonic functions. II”, Izvestiya Akademii Nauk UzSSR. Ser. Fiz.-Mat. Nauk, 1990, no. 5, 28–33 (in Russian) | Zbl
[21] Chirka E. M., “Removable singularities of holomorphic functions”, Sbornik: Mathematics, 207:9 (2016), 1335–1343 | DOI | MR | Zbl
[22] Chirka E. M., “On removable singularities of complex analytic sets”, Sbornik: Mathematics, 208:7 (2017), 1073–1086 | DOI | MR | Zbl
[23] Abdullaev B. I., “Subharmonic functions on complex hyperplanes of ${\mathbb C}^{n}$”, Journal of Siberian Federal University. Mathematics and Physics, 6:4 (2013), 409–416 | Zbl
[24] Abdullaev B. I., Imomkulov S. A., Sharipov R. A., “Removable singular sets of $m$-subharmonic functions”, Algebra, Complex Analysis, and Pluripotential Theory, Springer, Cham, 2018, 1–11 | DOI | Zbl
[25] Karim S. A. A., Nguyen V. T., “On the space of $m$-subharmonic functions”, Theoretical, Modelling and Numerical Simulations Toward Industry 4.0, Springer, Singapore, 2020, 133–166 | DOI
[26] {Å}hag P., Czy{ż} R., Hed L., “Extension and approximation of $m$-subharmonic functions”, Complex Variables and Elliptic Equations, 63:6 (2018), 783–801 | DOI | MR
[27] {Å}hag P., Czy{ż} R., Hed L., “The geometry of $m$-hyperconvex domains”, The Journal of Geometric Analysis, 28:3 (2018), 3196–3222 | DOI
[28] {Å}hag P., Czy{ż} R., “On a characterization of $m$-subharmonic functions with weak singularities”, Annales Polonici Mathematici, 123 (2019), 21–29 | DOI | MR
[29] Blocki Z., “Weak solutions to the complex Hessian equation”, Annales de l'institut Fourier, 55:5 (2005), 1735–1756 | DOI | Zbl
[30] Blanchet P., “On removable singularities of subharmonic and plurisubharmonic functions”, Complex Variables, 26:4 (1995), 311–322 | DOI | MR | Zbl
[31] Cegrell U., “Sur les ensembles singuliers impropes des plurisubharmonic”, Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, Sér. A, 281 (1975), 905–908 (in French) | Zbl
[32] Chirka E. M., “On the removal of subharmonic singularities of plurisubharmonic functions”, Annales Polonici Mathematici, 80 (2003), 113–116 | DOI | MR | Zbl
[33] Ching J., C{î}rstea F., “Existence and classification of singular solutions to nonlinear elliptic equations with a gradient term”, Analysis and PDE, 8:8 (2015), 1931–1962 | DOI | MR | Zbl
[34] Dinew S., Kolodziej S., “A priori estimates for the complex Hessian equation”, Analysis and PDE, 7:1 (2014), 227–244 | DOI | MR | Zbl
[35] Gardiner S. J., “Removable singularities for subharmonic functions”, Pacific Journal of Mathematics, 147:1 (1991), 71–80 | DOI | MR | Zbl
[36] Lelong P., “Ensembles singuliers impropres des fonctions plurisousharmoniques”, Journal de Mathématiques Pures et Appliquées. Neuvième Série, 36 (1957), 263–303 (in French) | Zbl
[37] Li S.-Yi., “On the Dirichlet problems for symmetric function equations of the eigenvalues of the complex Hessian”, The Asian Journal of Mathematics, 8:1 (2004), 87–106 | DOI | Zbl
[38] Lu H. C., “Solutions to degenerate Hessian equations”, Journal de Mathématiques Pures et Appliquées, 100:6 (2013), 785–805 | DOI | Zbl
[39] Lu H. C., “A variational approach to complex Hessian equations in $\mathbb C^n$”, Journal of Mathematical Analysis and Applications, 431:1 (2015), 228–259 | DOI | MR | Zbl
[40] Lu H. C., Nguyen V.-D., “Degenerate complex Hessian equations on compact K{ä}hler manifolds”, Indiana University Mathematics Journal, 64:6 (2015), 1721–1745 https://www.jstor.org/stable/26316203 | DOI | MR | Zbl
[41] Marcus M., Veron L., “Removable singularities and boundary traces”, Journal de Mathématiques Pures et Appliquées, 80:9 (2001), 879–900 | DOI | Zbl
[42] Mattila P., “Integralgeometric properties of capacities”, Transactions of the American Mathematical Society, 266:2 (1981), 539–554 | DOI | MR | Zbl
[43] Mattila P., “A class of sets with positive length and zero analytic capacity”, Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica, 10 (1985), 387–395 | DOI | Zbl
[44] Nguyen X. U., “Removable sets of analytic functions satisfying a Lipschitz condition”, Arkiv f{ö}r Matematik, 17:1–2 (1979), 19–27 | DOI | Zbl
[45] Nguyen X. U., “A removable set for Lipschitz harmonic functions”, Michigan Mathematical Journal, 37:1 (1990), 45–51 | DOI | MR | Zbl
[46] Nguyen N. C., “H{ö}lder continuous solutions to complex Hessian equations”, Potential Analysis, 41:3 (2014), 887–902 | DOI | MR | Zbl
[47] Nguyen N. C., “Subsolution theorem for the complex Hessian equation”, Universitatis Iagellonicae Acta Mathematica, 2012, no. 50, 69–88 | Zbl
[48] Nguyen V. T., “The convexity of radially symmetric $m$-subharmonic functions”, Complex Variables and Elliptic Equations, 63:10 (2018), 1396–1407 | DOI | MR | Zbl
[49] Nguyen V. T., “On delta $m$-subharmonic functions”, Annales Polonici Mathematici, 118 (2016), 25–49 | DOI | MR | Zbl
[50] Riihentaus J., “Exceptional sets for subharmonic functions”, Journal of Basic and Applied Sciences, 11 (2015), 567–571 | DOI
[51] Riihentaus J., “Removability results for subharmonic functions, for harmonic functions and for holomorphic functions”, Matematychni Studii, 46:2 (2016), 152–158 | DOI | Zbl
[52] Riihentaus J., “A removability results for holomorphic functions of several complex variables”, Journal of Basic and Applied Sciences, 12 (2016), 50–52 | DOI
[53] Kaufman R., Wu J.-M., “Removable singularities for analytic or subharmonic functions”, Arkiv fór Matematik, 18:1–2. (1980), 107–116 | DOI | Zbl
[54] Shapiro V.L., “Subharmonic functions and Hausdorff measure”, Journal of Differential Equations, 27:1 (1978), 28–45 | DOI | MR | Zbl
[55] Verbitsky M., “Plurisubharmonic functions in calibrated geometry and $q$-convexity”, Mathematische Zeitschrift, 264:4 (2010), 939–957 | DOI | MR | Zbl
[56] Carleson L., Selected problems on exceptional sets, D. Van Nostrand Company, Princeton, 1967 | Zbl
[57] Chirka E. M., Complex analytic sets, Nauka, M., 1985
[58] Shabat B. V., Introduction to complex analysis, v. 2, Nauka, M., 1985
[59] Joyce D., Riemannian holonomy groups and calibrated geometry, Springer, Berlin–Heidelberg, 2003 | DOI | Zbl
[60] Riihentaus J., Subharmonic functions, generalizations, holomorphic functions, meromorphic functions, and properties, Bentham Science Publishers, 2021 | DOI | Zbl