Structure of singular sets of some classes of subharmonic functions
    
    
  
  
  
      
      
      
        
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 4, pp. 519-535
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper, we survey the recent results on removable singular sets for the classes of $m$-subharmonic ($m-sh$) and strongly $m$-subharmonic ($sh_m$), as well as $\alpha$-subharmonic functions, which are applied to study the singular sets of $sh_{m}$ functions. In particular, for strongly $m$-subharmonic functions from the class $L_{loc}^{p}$, it is proved that a set is a removable singular set if it has zero $C_ {q, s}$-capacity. The proof of this statement is based on the fact that the space of basic functions, supported on the set $D\backslash E$, is dense in the space of test functions defined in the set $D$ on the $L_{q}^{s}$-norm. Similar results in the case of classical (sub)harmonic functions were studied in the works by L. Carleson, E. Dolzhenko, M. Blanchet, S. Gardiner, J. Riihentaus, V. Shapiro, A. Sadullaev and Zh. Yarmetov, B. Abdullaev and S. Imomkulov.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
subharmonic functions, $m$-subharmonic functions, strongly $m$-subharmonic functions, $\alpha$-subharmonic functions, Borel measure, $C_{q,s}$-capacity, polar set.
                    
                  
                
                
                @article{VUU_2021_31_4_a0,
     author = {B. I. Abdullaev and S. A. Imomkulov and R. A. Sharipov},
     title = {Structure of singular sets of some classes of subharmonic functions},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {519--535},
     publisher = {mathdoc},
     volume = {31},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_4_a0/}
}
                      
                      
                    TY - JOUR AU - B. I. Abdullaev AU - S. A. Imomkulov AU - R. A. Sharipov TI - Structure of singular sets of some classes of subharmonic functions JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2021 SP - 519 EP - 535 VL - 31 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2021_31_4_a0/ LA - ru ID - VUU_2021_31_4_a0 ER -
%0 Journal Article %A B. I. Abdullaev %A S. A. Imomkulov %A R. A. Sharipov %T Structure of singular sets of some classes of subharmonic functions %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2021 %P 519-535 %V 31 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2021_31_4_a0/ %G ru %F VUU_2021_31_4_a0
B. I. Abdullaev; S. A. Imomkulov; R. A. Sharipov. Structure of singular sets of some classes of subharmonic functions. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 4, pp. 519-535. http://geodesic.mathdoc.fr/item/VUU_2021_31_4_a0/
