On the structure of the singular set of solutions in one class of 3D time-optimal control problems
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 3, pp. 471-486 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A class of time-optimal control problems in terms of speed in three-dimensional space with a spherical velocity vector is considered. A smooth regular curve $\Gamma$ was chosen as the target set. Pseudo-vertices — characteristic points on $\Gamma,$ responsible for the appearance of a singularity in the optimal result function, are selected. The characteristic features of the structure of a singular set belonging to the family of bisectors are revealed. An analytical representation is found for the extreme points of the bisector corresponding to a fixed pseudo-vertex. As an illustration of the effectiveness of the developed methods for solving nonsmooth dynamic problems, an example of the numerical-analytical construction of resolving structures of a control problem in terms of speed is given.
Keywords: time-optimal problem, dispersing surface, bisector, extreme point, curvature, singular set, Frene's trihedron.
Mots-clés : pseudo-vertex
@article{VUU_2021_31_3_a8,
     author = {A. A. Uspenskii and P. D. Lebedev},
     title = {On the structure of the singular set of solutions in one class of {3D} time-optimal control problems},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {471--486},
     year = {2021},
     volume = {31},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a8/}
}
TY  - JOUR
AU  - A. A. Uspenskii
AU  - P. D. Lebedev
TI  - On the structure of the singular set of solutions in one class of 3D time-optimal control problems
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2021
SP  - 471
EP  - 486
VL  - 31
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a8/
LA  - ru
ID  - VUU_2021_31_3_a8
ER  - 
%0 Journal Article
%A A. A. Uspenskii
%A P. D. Lebedev
%T On the structure of the singular set of solutions in one class of 3D time-optimal control problems
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2021
%P 471-486
%V 31
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a8/
%G ru
%F VUU_2021_31_3_a8
A. A. Uspenskii; P. D. Lebedev. On the structure of the singular set of solutions in one class of 3D time-optimal control problems. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 3, pp. 471-486. http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a8/

[1] Lebedev P. D., Uspenskii A. A., Ushakov V. N., “Construction of a minimax solution for an eikonal-type equation”, Proceedings of the Steklov Institute of Mathematics, 263, suppl. 2 (2008), 191–201 | DOI | Zbl

[2] Subbotin A. I., Generalized solutions of first order PDEs. The dynamical optimization perspective, Birkh{ä}user, Boston, 1995 | DOI

[3] Lebedev P. D., Uspenskii A. A., “Analytical and numerical construction of the optimal outcome function for a class of time-optimal problems”, Computational Mathematics and Modeling, 19:4 (2008), 375–386 | DOI | Zbl | Zbl

[4] Kružkov S. N., “Generalized solutions of the Hamilton–Jacobi equations of eikonal type. I. Formulation of the problems; existence, uniqueness and stability theorems; some properties of the solutions”, Mathematics of the USSR — Sbornik, 27:3 (1975), 406–446 | DOI | Zbl

[5] Uspenskii A. A., Lebedev P. D., “Identification of the singularity of the generalized solution of the Dirichlet problem for an eikonal type equation under the conditions of minimal smoothness of a boundary set”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 28:1 (2018), 59–73 (in Russian) | DOI | Zbl

[6] Arnold V. I., Singularities of caustics and wave fronts, Springer, Dordrecht, 1990 | DOI

[7] Siersma D., “Properties of conflict sets in the plan”, Banach Center Publications, 50:1 (1999), 267–276 | DOI | Zbl

[8] Giblin P., “Symmetry sets and medial axes in two and three dimensions”, The Mathematics of Surfaces IX, Springer, London, 2000, 306–321 | DOI | Zbl

[9] Sotomayor J., Siersma D., Garcia R., “Curvatures of conflict surfaces in Euclidean 3-space”, Banach Center Publications, 50:1 (1999), 277–285 | DOI | Zbl

[10] Sedykh V. D., “On Euler characteristics of manifolds of singularities of wave fronts”, Functional Analysis and Its Applications, 46:1 (2012), 77–80 | DOI | DOI | Zbl

[11] Sedykh V. D., “Topology of singularities of a stable real caustic germ of type $E_6$”, Izvestiya: Mathematics, 82:3 (2018), 596–611 | DOI | DOI | Zbl

[12] Isaacs R., Differential games, John Wiley and Sons, New York, 1965 | Zbl

[13] Dem'yanov V. F., Vasil'ev L. V., Nondifferentiable optimization, Springer, New York, 1985 https://www.springer.com/gp/book/9780387909516

[14] Lebedev P. D., Uspenskii A. A., “Construction of scattering curves in one class of time-optimal control problems with leaps of a target set boundary curvature”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 55 (2020), 93–112 (in Russian) | DOI | Zbl

[15] Poznyak E. G., Shikin E. V., Differential geometry: the first acquaintance, Moscow State University, M., 1990

[16] Shcherbakov R. N., Pichurin L. F., Differentials help geometry, Prosveshchenie, M., 1982

[17] Uspenskii A. A., “Calculation formulas for nonsmooth singularities of the optimal result function in a time-optimal problem”, Proceedings of the Steklov Institute of Mathematics, 291, suppl. 1 (2015), 239–254 | DOI

[18] Lebedev P. D., Uspenskii A. A., Program for constructing wave fronts and functions of the Euclidean distance to a compact nonconvex set, Certificate of state registration of the computer program No 2017662074, October 27, 2017