@article{VUU_2021_31_3_a6,
author = {L. I. Rubina and O. N. Ul'yanov},
title = {On solving non-homogeneous partial differential equations with right-hand side defined on the grid},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {443--457},
year = {2021},
volume = {31},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a6/}
}
TY - JOUR AU - L. I. Rubina AU - O. N. Ul'yanov TI - On solving non-homogeneous partial differential equations with right-hand side defined on the grid JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2021 SP - 443 EP - 457 VL - 31 IS - 3 UR - http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a6/ LA - ru ID - VUU_2021_31_3_a6 ER -
%0 Journal Article %A L. I. Rubina %A O. N. Ul'yanov %T On solving non-homogeneous partial differential equations with right-hand side defined on the grid %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2021 %P 443-457 %V 31 %N 3 %U http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a6/ %G ru %F VUU_2021_31_3_a6
L. I. Rubina; O. N. Ul'yanov. On solving non-homogeneous partial differential equations with right-hand side defined on the grid. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 3, pp. 443-457. http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a6/
[1] Rubina L. I., Ul'yanov O. N., “A geometric method for solving nonlinear partial differential equations”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 16, no. 2, 2010, 209–225 (in Russian)
[2] Rubina L. I., Ul'yanov O. N., “On one approach to solving nonhomogeneous partial differential equations”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 27:3 (2017), 355–364 (in Russian) | DOI | Zbl
[3] Yaramyshev S., Vormann H., Adonin A., Barth W., Dahl L., Gerhard P., Groening L., Hollinger R., Maier M., Mickat S., Orzhekhovskaya A., “Virtual charge state separator as an advanced tool coupling measurements and simulations”, Physical Review Special Topics — Accelerators and Beams, 18:5 (2015) | DOI
[4] Zohdi T. I., “Modeling and simulation of laser processing of particulate-functionalized materials”, Archives of Computational Methods in Engineering, 24:1 (2017), 89–113 | DOI | Zbl
[5] Hiptmair R., Li L., Mao Sh., Zheng W., “A fully divergence-free finite element method for magnetohydrodynamic equations”, Mathematical Models and Methods in Applied Sciences, 28:4 (2018), 659–695 | DOI | Zbl
[6] Cheng K., Wang Ch., Wise S. M., “A weakly nonlinear, energy stable scheme for the strongly anisotropic Cahn–Hilliard equation and its convergence analysis”, Journal of Computational Physics, 405 (2020) | DOI | Zbl
[7] Schiesser W., The numerical method of lines: integration of partial differential equations, Academic Press, 1991 | Zbl
[8] Courant R., Hilbert D., Methods of mathematical physics, v. 2, Partial differential equations, Interscience, New York, 1962 | Zbl
[9] Sidorov A. F., Selected works. Mathematics. Mechanics, Fizmatlit, M., 2001
[10] Kamke E., Differentialgleichungen reeller Funktionen, Akademische Verlagsgesellschaft, Leipzig, 1930 | Zbl
[11] Matveev N. M., Methods of integration of ordinary differential equations, Vysshaya shkola, M., 1967