On solving non-homogeneous partial differential equations with right-hand side defined on the grid
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 3, pp. 443-457 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An algorithm is proposed for obtaining solutions of partial differential equations with right-hand side defined on the grid $\{ x_{1}^{\mu}, x_{2}^{\mu}, \ldots, x_{n}^{\mu}\},\ (\mu=1,2,\ldots,N)\colon f_{\mu}=f(x_{1}^{\mu}, x_{2}^{\mu}, \ldots, x_{n}^{\mu}).$ Here $n$ is the number of independent variables in the original partial differential equation, $N$ is the number of rows in the grid for the right-hand side, $f=f( x_{1}, x_{2}, \ldots, x_{n})$ is the right-hand of the original equation. The algorithm implements a reduction of the original equation to a system of ordinary differential equations (ODE system) with initial conditions at each grid point and includes the following sequence of actions. We seek a solution to the original equation, depending on one independent variable. The original equation is associated with a certain system of relations containing arbitrary functions and including the partial differential equation of the first order. For an equation of the first order, an extended system of equations of characteristics is written. Adding to it the remaining relations containing arbitrary functions, and demanding that these relations be the first integrals of the extended system of equations of characteristics, we arrive at the desired ODE system, completing the reduction. The proposed algorithm allows at each grid point to find a solution of the original partial differential equation that satisfies the given initial and boundary conditions. The algorithm is used to obtain solutions of the Poisson equation and the equation of unsteady axisymmetric filtering at the points of the grid on which the right-hand sides of the corresponding equations are given.
Keywords: partial differential equations, solution of initial and boundary value problems, extended system of characteristics equations, reduction of PDEs to ODE systems.
@article{VUU_2021_31_3_a6,
     author = {L. I. Rubina and O. N. Ul'yanov},
     title = {On solving non-homogeneous partial differential equations with right-hand side defined on the grid},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {443--457},
     year = {2021},
     volume = {31},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a6/}
}
TY  - JOUR
AU  - L. I. Rubina
AU  - O. N. Ul'yanov
TI  - On solving non-homogeneous partial differential equations with right-hand side defined on the grid
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2021
SP  - 443
EP  - 457
VL  - 31
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a6/
LA  - ru
ID  - VUU_2021_31_3_a6
ER  - 
%0 Journal Article
%A L. I. Rubina
%A O. N. Ul'yanov
%T On solving non-homogeneous partial differential equations with right-hand side defined on the grid
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2021
%P 443-457
%V 31
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a6/
%G ru
%F VUU_2021_31_3_a6
L. I. Rubina; O. N. Ul'yanov. On solving non-homogeneous partial differential equations with right-hand side defined on the grid. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 3, pp. 443-457. http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a6/

[1] Rubina L. I., Ul'yanov O. N., “A geometric method for solving nonlinear partial differential equations”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 16, no. 2, 2010, 209–225 (in Russian)

[2] Rubina L. I., Ul'yanov O. N., “On one approach to solving nonhomogeneous partial differential equations”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 27:3 (2017), 355–364 (in Russian) | DOI | Zbl

[3] Yaramyshev S., Vormann H., Adonin A., Barth W., Dahl L., Gerhard P., Groening L., Hollinger R., Maier M., Mickat S., Orzhekhovskaya A., “Virtual charge state separator as an advanced tool coupling measurements and simulations”, Physical Review Special Topics — Accelerators and Beams, 18:5 (2015) | DOI

[4] Zohdi T. I., “Modeling and simulation of laser processing of particulate-functionalized materials”, Archives of Computational Methods in Engineering, 24:1 (2017), 89–113 | DOI | Zbl

[5] Hiptmair R., Li L., Mao Sh., Zheng W., “A fully divergence-free finite element method for magnetohydrodynamic equations”, Mathematical Models and Methods in Applied Sciences, 28:4 (2018), 659–695 | DOI | Zbl

[6] Cheng K., Wang Ch., Wise S. M., “A weakly nonlinear, energy stable scheme for the strongly anisotropic Cahn–Hilliard equation and its convergence analysis”, Journal of Computational Physics, 405 (2020) | DOI | Zbl

[7] Schiesser W., The numerical method of lines: integration of partial differential equations, Academic Press, 1991 | Zbl

[8] Courant R., Hilbert D., Methods of mathematical physics, v. 2, Partial differential equations, Interscience, New York, 1962 | Zbl

[9] Sidorov A. F., Selected works. Mathematics. Mechanics, Fizmatlit, M., 2001

[10] Kamke E., Differentialgleichungen reeller Funktionen, Akademische Verlagsgesellschaft, Leipzig, 1930 | Zbl

[11] Matveev N. M., Methods of integration of ordinary differential equations, Vysshaya shkola, M., 1967