Sufficient Turing instability conditions for the Schnakenberg system
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 3, pp. 424-442 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A classical reaction–diffusion system, the Schnakenberg system, is under consideration in a bounded domain $\Omega\subset\mathbb{R}^m$ with Neumann boundary conditions. We study diffusion-driven instability of a stationary spatially homogeneous solution of this system, also called the Turing instability, which arises when the diffusion coefficient $d$ changes. An analytical description of the region of necessary and sufficient conditions for the Turing instability in the parameter plane is obtained by analyzing the linearized system in diffusionless and diffusion approximations. It is shown that one of the boundaries of the region of necessary conditions is an envelope of the family of curves that bound the region of sufficient conditions. Moreover, the intersection points of two consecutive curves of this family lie on a straight line whose slope depends on the eigenvalues of the Laplace operator and does not depend on the diffusion coefficient. We find an analytical expression for the critical diffusion coefficient at which the stability of the equilibrium position of the system is lost. We derive conditions under which the set of wavenumbers corresponding to neutral stability modes is countable, finite, or empty. It is shown that the semiaxis $d>1$ can be represented as a countable union of half-intervals with split points expressed in terms of the eigenvalues of the Laplace operator; each half-interval is characterized by the minimum wavenumber of loss of stability.
Keywords: reaction–diffusion systems, Schnakenberg system, Turing space, critical wavenumber.
@article{VUU_2021_31_3_a5,
     author = {S. V. Revina and S. A. Lysenko},
     title = {Sufficient {Turing} instability conditions for the {Schnakenberg} system},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {424--442},
     year = {2021},
     volume = {31},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a5/}
}
TY  - JOUR
AU  - S. V. Revina
AU  - S. A. Lysenko
TI  - Sufficient Turing instability conditions for the Schnakenberg system
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2021
SP  - 424
EP  - 442
VL  - 31
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a5/
LA  - en
ID  - VUU_2021_31_3_a5
ER  - 
%0 Journal Article
%A S. V. Revina
%A S. A. Lysenko
%T Sufficient Turing instability conditions for the Schnakenberg system
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2021
%P 424-442
%V 31
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a5/
%G en
%F VUU_2021_31_3_a5
S. V. Revina; S. A. Lysenko. Sufficient Turing instability conditions for the Schnakenberg system. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 3, pp. 424-442. http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a5/

[1] Wei J., Winter M., Mathematical aspects of pattern formation in biological systems, Springer, London, 2014 | DOI | Zbl

[2] Yi F., Wei J., Shi J., “Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator–prey system”, Journal of Differential Equations, 246:5 (2009), 1944–1977 | DOI | Zbl

[3] Xu Ch., Wei J., “Hopf bifurcation analysis in a one-dimensional Schnakenberg reaction–diffusion model”, Nonlinear Analysis: Real World Applications, 13:4 (2012), 1961–1977 | DOI | Zbl

[4] Liu P., Shi J., Wang Y., Feng X., “Bifurcation analysis of reaction–diffusion Schnakenberg model”, Journal of Mathematical Chemistry, 51:8 (2013), 2001–2019 | DOI | Zbl

[5] Kazarnikov A. V., Revina S. V., “The onset of auto-oscillations in Rayleigh system with diffusion”, Vestnik Yuzhno-Ural'skogo Universiteta. Ser. Matematicheskoe Modelirovanie i Programmirovanie, 9:2 (2016), 16–28 (in Russian) | DOI | Zbl

[6] Kazarnikov A. V., Revina S. V., “Bifurcations in Rayleigh reaction–diffusion system”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 27:4 (2017), 499–514 (in Russian) | DOI | Zbl

[7] Jiang W., Wang H., Cao X., “Turing instability and Turing–Hopf bifurcation in diffusive Schnakenberg systems with gene expression time delay”, Journal of Dynamics and Differential Equations, 31:4 (2019), 2223–2247 | DOI | Zbl

[8] Li Y., Jiang J., “Pattern formation of a Schnakenberg-type plant root hair initiation model”, Electronic Journal of Qualitative Theory of Differential Equations, 2018, no. 88, 1–19 | DOI

[9] Kuznetsov M. B., “Investigation of Turing structures formation under the influence of wave instability”, Computer Research and Modeling, 11:3 (2019), 397–412 (in Russian) | DOI

[10] Lysenko S. A., Revina S. V., “The region of Turing instability in Schnakenberg system”, Numerical Algebra with Applications, Proceedings of Eight China–Russia Conference, Southern Federal University, Rostov-on-Don, 2019, 44–48

[11] Turing A. M., “The chemical basis of morphogenesis”, Philosofical Transactions of the Royal Society of London. Series B, Biological Sciences, 237:641 (1952), 37–72 | DOI | Zbl

[12] Murray J. D., Mathematical biology, v. II, Spatial models and biomedical applications, Springer, New York, 2003 | DOI | Zbl

[13] Schnakenberg J., “Simple chemical reaction systems with limit cycle behaviour”, Journal of Theoretical Biology, 81:3 (1979), 389–400 | DOI

[14] Kato T., Perturbation theory for linear operators, Springer, Berlin–Heidelberg, 1995 | DOI | Zbl

[15] Yudovich V. I., The linearization method in hydrodynamical stability theory, AMS, Providence, 1989 | DOI | Zbl

[16] Akhiezer N. I., Glazman I. M., Theory of linear operators in Hilbert space, Nauka, M., 1966