@article{VUU_2021_31_3_a5,
author = {S. V. Revina and S. A. Lysenko},
title = {Sufficient {Turing} instability conditions for the {Schnakenberg} system},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {424--442},
year = {2021},
volume = {31},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a5/}
}
TY - JOUR AU - S. V. Revina AU - S. A. Lysenko TI - Sufficient Turing instability conditions for the Schnakenberg system JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2021 SP - 424 EP - 442 VL - 31 IS - 3 UR - http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a5/ LA - en ID - VUU_2021_31_3_a5 ER -
%0 Journal Article %A S. V. Revina %A S. A. Lysenko %T Sufficient Turing instability conditions for the Schnakenberg system %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2021 %P 424-442 %V 31 %N 3 %U http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a5/ %G en %F VUU_2021_31_3_a5
S. V. Revina; S. A. Lysenko. Sufficient Turing instability conditions for the Schnakenberg system. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 3, pp. 424-442. http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a5/
[1] Wei J., Winter M., Mathematical aspects of pattern formation in biological systems, Springer, London, 2014 | DOI | Zbl
[2] Yi F., Wei J., Shi J., “Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator–prey system”, Journal of Differential Equations, 246:5 (2009), 1944–1977 | DOI | Zbl
[3] Xu Ch., Wei J., “Hopf bifurcation analysis in a one-dimensional Schnakenberg reaction–diffusion model”, Nonlinear Analysis: Real World Applications, 13:4 (2012), 1961–1977 | DOI | Zbl
[4] Liu P., Shi J., Wang Y., Feng X., “Bifurcation analysis of reaction–diffusion Schnakenberg model”, Journal of Mathematical Chemistry, 51:8 (2013), 2001–2019 | DOI | Zbl
[5] Kazarnikov A. V., Revina S. V., “The onset of auto-oscillations in Rayleigh system with diffusion”, Vestnik Yuzhno-Ural'skogo Universiteta. Ser. Matematicheskoe Modelirovanie i Programmirovanie, 9:2 (2016), 16–28 (in Russian) | DOI | Zbl
[6] Kazarnikov A. V., Revina S. V., “Bifurcations in Rayleigh reaction–diffusion system”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 27:4 (2017), 499–514 (in Russian) | DOI | Zbl
[7] Jiang W., Wang H., Cao X., “Turing instability and Turing–Hopf bifurcation in diffusive Schnakenberg systems with gene expression time delay”, Journal of Dynamics and Differential Equations, 31:4 (2019), 2223–2247 | DOI | Zbl
[8] Li Y., Jiang J., “Pattern formation of a Schnakenberg-type plant root hair initiation model”, Electronic Journal of Qualitative Theory of Differential Equations, 2018, no. 88, 1–19 | DOI
[9] Kuznetsov M. B., “Investigation of Turing structures formation under the influence of wave instability”, Computer Research and Modeling, 11:3 (2019), 397–412 (in Russian) | DOI
[10] Lysenko S. A., Revina S. V., “The region of Turing instability in Schnakenberg system”, Numerical Algebra with Applications, Proceedings of Eight China–Russia Conference, Southern Federal University, Rostov-on-Don, 2019, 44–48
[11] Turing A. M., “The chemical basis of morphogenesis”, Philosofical Transactions of the Royal Society of London. Series B, Biological Sciences, 237:641 (1952), 37–72 | DOI | Zbl
[12] Murray J. D., Mathematical biology, v. II, Spatial models and biomedical applications, Springer, New York, 2003 | DOI | Zbl
[13] Schnakenberg J., “Simple chemical reaction systems with limit cycle behaviour”, Journal of Theoretical Biology, 81:3 (1979), 389–400 | DOI
[14] Kato T., Perturbation theory for linear operators, Springer, Berlin–Heidelberg, 1995 | DOI | Zbl
[15] Yudovich V. I., The linearization method in hydrodynamical stability theory, AMS, Providence, 1989 | DOI | Zbl
[16] Akhiezer N. I., Glazman I. M., Theory of linear operators in Hilbert space, Nauka, M., 1966