On projections of products of spaces
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 3, pp. 409-413

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider dense sets of products of topological spaces. We prove that in the product $Z^c=\prod\limits_{\alpha\in 2^\omega}Z_\alpha$, where $Z_\alpha=Z$ $(\alpha\in 2^\omega),$ there are dense sets such that their countable subsets have projections with additional properties. These properties entail that these dense sets contain no convergent sequences. By these properties we prove that the character of closed sets of the product is uncountable.
Keywords: product of spaces, projection, dense sets.
@article{VUU_2021_31_3_a3,
     author = {A. A. Gryzlov},
     title = {On projections of products of spaces},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {409--413},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a3/}
}
TY  - JOUR
AU  - A. A. Gryzlov
TI  - On projections of products of spaces
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2021
SP  - 409
EP  - 413
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a3/
LA  - ru
ID  - VUU_2021_31_3_a3
ER  - 
%0 Journal Article
%A A. A. Gryzlov
%T On projections of products of spaces
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2021
%P 409-413
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a3/
%G ru
%F VUU_2021_31_3_a3
A. A. Gryzlov. On projections of products of spaces. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 3, pp. 409-413. http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a3/