A numerical method for solving the second initial-boundary value problem for a multidimensional third-order pseudoparabolic equation
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 3, pp. 384-408
Voir la notice de l'article provenant de la source Math-Net.Ru
The work is devoted to the study of the second initial-boundary value problem for a general-form third-order differential equation of pseudoparabolic type with variable coefficients in a multidimensional domain with an arbitrary boundary. In this paper, a multidimensional pseudoparabolic equation is reduced to an integro-differential equation with a small parameter, and a locally one-dimensional difference scheme by A. A. Samarskii is used. Using the maximum principle, an a priori estimate is obtained for the solution of a locally one-dimensional difference scheme in the uniform metric in the $C$ norm. The stability and convergence of the locally one-dimensional difference scheme are proved.
Mots-clés :
pseudoparabolic equation
Keywords: moisture transfer equation, locally one-dimensional scheme, stability, convergence of the difference scheme, additivity of the scheme.
Keywords: moisture transfer equation, locally one-dimensional scheme, stability, convergence of the difference scheme, additivity of the scheme.
@article{VUU_2021_31_3_a2,
author = {M. Kh. Beshtokov},
title = {A numerical method for solving the second initial-boundary value problem for a multidimensional third-order pseudoparabolic equation},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {384--408},
publisher = {mathdoc},
volume = {31},
number = {3},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a2/}
}
TY - JOUR AU - M. Kh. Beshtokov TI - A numerical method for solving the second initial-boundary value problem for a multidimensional third-order pseudoparabolic equation JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2021 SP - 384 EP - 408 VL - 31 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a2/ LA - ru ID - VUU_2021_31_3_a2 ER -
%0 Journal Article %A M. Kh. Beshtokov %T A numerical method for solving the second initial-boundary value problem for a multidimensional third-order pseudoparabolic equation %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2021 %P 384-408 %V 31 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a2/ %G ru %F VUU_2021_31_3_a2
M. Kh. Beshtokov. A numerical method for solving the second initial-boundary value problem for a multidimensional third-order pseudoparabolic equation. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 3, pp. 384-408. http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a2/