Mots-clés : method of viscous vortex domains.
@article{VUU_2021_31_3_a10,
author = {E. Yu. Prosviryakov},
title = {Recovery of radial-axial velocity in axisymmetric swirling flows of a viscous incompressible fluid in the {Lagrangian} consideration of vorticity evolution},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {505--516},
year = {2021},
volume = {31},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a10/}
}
TY - JOUR AU - E. Yu. Prosviryakov TI - Recovery of radial-axial velocity in axisymmetric swirling flows of a viscous incompressible fluid in the Lagrangian consideration of vorticity evolution JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2021 SP - 505 EP - 516 VL - 31 IS - 3 UR - http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a10/ LA - ru ID - VUU_2021_31_3_a10 ER -
%0 Journal Article %A E. Yu. Prosviryakov %T Recovery of radial-axial velocity in axisymmetric swirling flows of a viscous incompressible fluid in the Lagrangian consideration of vorticity evolution %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2021 %P 505-516 %V 31 %N 3 %U http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a10/ %G ru %F VUU_2021_31_3_a10
E. Yu. Prosviryakov. Recovery of radial-axial velocity in axisymmetric swirling flows of a viscous incompressible fluid in the Lagrangian consideration of vorticity evolution. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 3, pp. 505-516. http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a10/
[1] Rosenhead L., “The formation of vortices from a surface of discontinuity”, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 134:823 (1931), 170–192 | DOI
[2] Belotserkovskii S. M., Nisht M. I., Separated and unseparated ideal liquid flow around thin wings, Nauka, M., 1978
[3] Cottet G.-H., Koumoutsakos P. D., Vortex methods: theory and practice, Cambridge University Press, Cambridge, 2000 | DOI
[4] Gutnikov V. A., Lifanov I. K., Setukha A. V., “On modelling the aerodynamics of buildings and structures using the closed vortex method”, Izvestiya Rossiiskoi Akademii Nauk. Mekhanika Zhikosti i Gaza, 2006, no. 4, 78–92 | Zbl
[5] Kochin N. E., Kibel' I. A., Roze N. V., Theoretical fluid mechanics, v. 1, Fizmatgiz, M., 1963
[6] Golubkin V. N., Sizykh G. B., “On some general properties of plane-parallel viscous fluid flows”, Izvestiya Akademii Nauk SSSR. Mekhanika Zhikosti i Gaza, 1987, no. 3, 176–178
[7] Brutyan M. A., Golubkin V. N., Krapivskii P. L., “On the Bernoulli equation for axisymmetric viscous fluid flows”, Uchenie zapiski Tsentral'nogo Aerogidrodinamicheskogo Instituta, 19:2 (1988), 98–100
[8] Ogami Y., Akamatsu T., “Viscous flow simulation using the discrete vortex model — the diffusion velocity method”, Computers and Fluids, 19:3–4 (1991), 433–441 | DOI | Zbl
[9] Dynnikova G. Ya., “Lagrange method for Navier–Stokes equations solving”, Doklady Akademii Nauk, 399:1 (2004), 42–46
[10] Markov V. V., Sizykh G. B., “Vorticity evolution in liquids and gases”, Fluid Dynamics, 50:2 (2015), 186–192 | DOI | Zbl
[11] Sizykh G. B., “Evolution of vorticity in swirling axisymmetric flows of a viscous incompressible fluid”, TsAGI Science Journal, 46:3 (2015), 209–217 | DOI
[12] Golubkin V. N., Markov V. V., Sizykh G. B., “The integral invariant of the equations of motion of a viscous gas”, Journal of Applied Mathematics and Mechanics, 79:6 (2015), 566–571 | DOI | Zbl
[13] Sizykh G. B., “Entropy value on the surface of a non-symmetric convex bow part of a body in the supersonic flow”, Fluid Dynamics, 54:7 (2019), 907–911 | DOI | DOI | Zbl
[14] Golubkin V. N., Sizykh G. B., “On the vorticity behind 3-D detached bow shock wave”, Advances in Aerodynamics, 1:1 (2019) | DOI
[15] Sizykh G. B., “Closed vortex lines in fluid and gas”, Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta. Ser. Fiziko-Matematicheskie Nauki, 23:3 (2019), 407–416 | DOI | Zbl
[16] Golubkin V. N., Sizykh G. B., “Generalization of the Crocco invariant for 3D gas flows behind detached bow shock wave”, Russian Mathematics, 63:12 (2019), 45–48 | DOI | DOI | Zbl
[17] Mironyuk I. Yu., Usov L. A., “The invariant of stagnation streamline for a stationary vortex flow of an ideal incompressible fluid around a body”, Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta. Ser. Fiziko-Matematicheskie Nauki, 24:4 (2020), 780–789 (in Russian) | DOI | Zbl
[18] Mironyuk I. Yu., Usov L. A., “Stagnation points on vortex lines in flows of an ideal gas”, Trydy Moskovskogo Fiziko-Tekhnicheskogo Instituta, 12:4(48) (2020), 171–176 (in Russian)