Asymptotic distribution of hitting times for critical maps of the circle
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 3, pp. 365-383 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is well known that the renormalization group transformation $\mathcal{R}$ has a unique fixed point $f_{cr}$ in the space of critical $C^{3}$-circle homeomorphisms with one cubic critical point $x_{cr}$ and the golden mean rotation number $\overline{\rho}:=\frac{\sqrt{5}-1}{2}.$ Denote by $Cr(\overline{\rho})$ the set of all critical circle maps $C^{1}$-conjugated to $f_{cr}.$ Let $f\in Cr(\overline{\rho})$ and let $\mu:=\mu_{f}$ be the unique probability invariant measure of $f.$ Fix $\theta \in(0,1).$ For each $n\geq1$ define $c_{n}:=c_{n}(\theta)$ such that $\mu([x_{cr},c_{n}])=\theta\cdot\mu([x_{cr},f^{q_{n}}(x_{cr})]),$ where $q_{n}$ is the first return time of the linear rotation $f_{\overline{\rho}}.$ We study convergence in law of rescaled point process of time hitting. We show that the limit distribution is singular w. r. t. the Lebesgue measure.
Keywords: circle homeomorphism, critical point, rotation number, hitting time, thermodynamic formalism.
@article{VUU_2021_31_3_a1,
     author = {Sh. A. Ayupov and A. A. Zhalilov},
     title = {Asymptotic distribution of hitting times for critical maps of the circle},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {365--383},
     year = {2021},
     volume = {31},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a1/}
}
TY  - JOUR
AU  - Sh. A. Ayupov
AU  - A. A. Zhalilov
TI  - Asymptotic distribution of hitting times for critical maps of the circle
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2021
SP  - 365
EP  - 383
VL  - 31
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a1/
LA  - en
ID  - VUU_2021_31_3_a1
ER  - 
%0 Journal Article
%A Sh. A. Ayupov
%A A. A. Zhalilov
%T Asymptotic distribution of hitting times for critical maps of the circle
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2021
%P 365-383
%V 31
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a1/
%G en
%F VUU_2021_31_3_a1
Sh. A. Ayupov; A. A. Zhalilov. Asymptotic distribution of hitting times for critical maps of the circle. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 3, pp. 365-383. http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a1/

[1] de Faria E., de Melo W., “Rigidity of critical circle mappings. I”, Journal of the European Mathematical Society, 1:4 (1999), 339–392 | DOI | Zbl

[2] Ostlund R., Rand D., Sethna J., Siggia E., “Universal properties of the transition from quasi-periodicity to chaos in dissipative systems”, Physica D: Nonlinear Phenomena, 8:3 (1983), 303–342 | DOI | Zbl

[3] Lanford O. E., III, de la Llave R., Solution of the functional equation for critical circle mappings with golden rotation number, Manuscript, 1984

[4] Epstein H., “Fixed points of composition operators. II”, Nonlinearity, 2:2 (1989), 305–310 | DOI | Zbl

[5] de Melo W., van Strien S., One-dimensional dynamics, Springer, Berlin, 1993 | DOI | Zbl

[6] Mestel B., A computer assisted proof of universality for Cubic critical maps of the circle with Golden mean rotation number, PhD thesis, University of Warwick, 1984

[7] Lanford O. E., III, “Functional equations for circle homeomorphisms with golden ratio rotation number”, Journal of Statistical Physics, 34:1–2 (1984), 57–73 | DOI

[8] Yoccoz J.-Ch., “Il n'y a pas de contre-exemple de Denjoy analytique”, Comptes Rendus de l'Académie des Sciences. Série I Mathématique, 298:7 (1984), 141–144 | Zbl

[9] Graczyk J., Światek G., “Singular measures in circle dynamics”, Communications in Mathematical Physics, 157:2 (1993), 213–230 | DOI | Zbl

[10] Guarino P., Martens M., de Melo W., “Rigidity of critical circle maps”, Duke Mathematical Journal, 167:11 (2018), 2125–2188 | DOI | Zbl

[11] Coelho Z., de Faria E., “Limit laws of entrance times for homeomorphisms of the circle”, Israel Journal of Mathematics, 93:1 (1996), 93–112 | DOI | Zbl

[12] Coelho Z., “The loss of tightness of time distributions for homeomorphisms of the circle”, Transactions of the American Mathematical Society, 356:11 (2004), 4427–4445 | DOI | Zbl

[13] Kim D. H., Seo B. K., “The waiting time for irrational rotations”, Nonlinearity, 16:5 (2003), 1861–1868 | DOI | Zbl

[14] Katznelson Y., Ornstein D., “The absolute continuity of the conjugation of certain diffeomorphisms of the circle”, Ergodic Theory and Dynamical Systems, 9:4 (1989), 681–690 | DOI

[15] Pitskel B., “Poisson limit law for Markov chains”, Ergodic Theory and Dynamical Systems, 11:3 (1991), 501–513 | DOI | Zbl

[16] Bowen R. E., Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Springer, Berlin, 2008 | DOI | Zbl

[17] Collet P., Galves A., “Asymptotic distribution of entrance times for expanding maps of the interval”, Dynamical Systems and Applications, World Scientific, 1995, 139–152 | DOI | Zbl

[18] Vul E. B., Sinai Ya. G., Khanin K. M., “Feigenbaum universality and the thermodynamic formalism”, Russian Mathematical Surveys, 39:3 (1984), 1–40 | DOI | Zbl

[19] Dzhalilov A. A., “Thermodynamic formalism and singular invariant measures for critical circle maps”, Theoretical and Mathematical Physics, 134:2 (2003), 166–180 | DOI | Zbl

[20] Ruelle D., Thermodynamic formalism. The mathematical structure of equilibrium statistical mechanics, Cambridge University Press, Cambridge, 2004 | DOI

[21] Dzhalilov A. A., “Limiting laws for entrance times of critical mappings of a circle”, Theoretical and Mathematical Physics, 138:2 (2004), 190–207 | DOI | Zbl