Asymptotic distribution of hitting times for critical maps of the circle
    
    
  
  
  
      
      
      
        
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 3, pp. 365-383
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is well known that the renormalization group transformation $\mathcal{R}$ has a unique fixed point $f_{cr}$ in the space of critical $C^{3}$-circle homeomorphisms with one cubic critical point $x_{cr}$ and the golden mean rotation number $\overline{\rho}:=\frac{\sqrt{5}-1}{2}.$ Denote by $Cr(\overline{\rho})$ the set of all critical circle maps $C^{1}$-conjugated to $f_{cr}.$ Let $f\in Cr(\overline{\rho})$ and let $\mu:=\mu_{f}$ be the unique probability invariant measure of $f.$ Fix $\theta \in(0,1).$ For each $n\geq1$ define $c_{n}:=c_{n}(\theta)$ such that $\mu([x_{cr},c_{n}])=\theta\cdot\mu([x_{cr},f^{q_{n}}(x_{cr})]),$ where $q_{n}$ is the first return time of the linear rotation $f_{\overline{\rho}}.$ We study convergence in law of rescaled point process of time hitting. We show that the limit distribution is singular w. r. t. the Lebesgue measure.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
circle homeomorphism, critical point, rotation number, hitting time, thermodynamic formalism.
                    
                    
                    
                  
                
                
                @article{VUU_2021_31_3_a1,
     author = {Sh. A. Ayupov and A. A. Zhalilov},
     title = {Asymptotic distribution of hitting times for critical maps of the circle},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {365--383},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a1/}
}
                      
                      
                    TY - JOUR AU - Sh. A. Ayupov AU - A. A. Zhalilov TI - Asymptotic distribution of hitting times for critical maps of the circle JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2021 SP - 365 EP - 383 VL - 31 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a1/ LA - en ID - VUU_2021_31_3_a1 ER -
%0 Journal Article %A Sh. A. Ayupov %A A. A. Zhalilov %T Asymptotic distribution of hitting times for critical maps of the circle %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2021 %P 365-383 %V 31 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a1/ %G en %F VUU_2021_31_3_a1
Sh. A. Ayupov; A. A. Zhalilov. Asymptotic distribution of hitting times for critical maps of the circle. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 3, pp. 365-383. http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a1/
