Asymptotic distribution of hitting times for critical maps of the circle
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 3, pp. 365-383

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that the renormalization group transformation $\mathcal{R}$ has a unique fixed point $f_{cr}$ in the space of critical $C^{3}$-circle homeomorphisms with one cubic critical point $x_{cr}$ and the golden mean rotation number $\overline{\rho}:=\frac{\sqrt{5}-1}{2}.$ Denote by $Cr(\overline{\rho})$ the set of all critical circle maps $C^{1}$-conjugated to $f_{cr}.$ Let $f\in Cr(\overline{\rho})$ and let $\mu:=\mu_{f}$ be the unique probability invariant measure of $f.$ Fix $\theta \in(0,1).$ For each $n\geq1$ define $c_{n}:=c_{n}(\theta)$ such that $\mu([x_{cr},c_{n}])=\theta\cdot\mu([x_{cr},f^{q_{n}}(x_{cr})]),$ where $q_{n}$ is the first return time of the linear rotation $f_{\overline{\rho}}.$ We study convergence in law of rescaled point process of time hitting. We show that the limit distribution is singular w. r. t. the Lebesgue measure.
Keywords: circle homeomorphism, critical point, rotation number, hitting time, thermodynamic formalism.
@article{VUU_2021_31_3_a1,
     author = {Sh. A. Ayupov and A. A. Zhalilov},
     title = {Asymptotic distribution of hitting times for critical maps of the circle},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {365--383},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a1/}
}
TY  - JOUR
AU  - Sh. A. Ayupov
AU  - A. A. Zhalilov
TI  - Asymptotic distribution of hitting times for critical maps of the circle
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2021
SP  - 365
EP  - 383
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a1/
LA  - en
ID  - VUU_2021_31_3_a1
ER  - 
%0 Journal Article
%A Sh. A. Ayupov
%A A. A. Zhalilov
%T Asymptotic distribution of hitting times for critical maps of the circle
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2021
%P 365-383
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a1/
%G en
%F VUU_2021_31_3_a1
Sh. A. Ayupov; A. A. Zhalilov. Asymptotic distribution of hitting times for critical maps of the circle. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 3, pp. 365-383. http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a1/