@article{VUU_2021_31_3_a1,
author = {Sh. A. Ayupov and A. A. Zhalilov},
title = {Asymptotic distribution of hitting times for critical maps of the circle},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {365--383},
year = {2021},
volume = {31},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a1/}
}
TY - JOUR AU - Sh. A. Ayupov AU - A. A. Zhalilov TI - Asymptotic distribution of hitting times for critical maps of the circle JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2021 SP - 365 EP - 383 VL - 31 IS - 3 UR - http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a1/ LA - en ID - VUU_2021_31_3_a1 ER -
%0 Journal Article %A Sh. A. Ayupov %A A. A. Zhalilov %T Asymptotic distribution of hitting times for critical maps of the circle %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2021 %P 365-383 %V 31 %N 3 %U http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a1/ %G en %F VUU_2021_31_3_a1
Sh. A. Ayupov; A. A. Zhalilov. Asymptotic distribution of hitting times for critical maps of the circle. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 3, pp. 365-383. http://geodesic.mathdoc.fr/item/VUU_2021_31_3_a1/
[1] de Faria E., de Melo W., “Rigidity of critical circle mappings. I”, Journal of the European Mathematical Society, 1:4 (1999), 339–392 | DOI | Zbl
[2] Ostlund R., Rand D., Sethna J., Siggia E., “Universal properties of the transition from quasi-periodicity to chaos in dissipative systems”, Physica D: Nonlinear Phenomena, 8:3 (1983), 303–342 | DOI | Zbl
[3] Lanford O. E., III, de la Llave R., Solution of the functional equation for critical circle mappings with golden rotation number, Manuscript, 1984
[4] Epstein H., “Fixed points of composition operators. II”, Nonlinearity, 2:2 (1989), 305–310 | DOI | Zbl
[5] de Melo W., van Strien S., One-dimensional dynamics, Springer, Berlin, 1993 | DOI | Zbl
[6] Mestel B., A computer assisted proof of universality for Cubic critical maps of the circle with Golden mean rotation number, PhD thesis, University of Warwick, 1984
[7] Lanford O. E., III, “Functional equations for circle homeomorphisms with golden ratio rotation number”, Journal of Statistical Physics, 34:1–2 (1984), 57–73 | DOI
[8] Yoccoz J.-Ch., “Il n'y a pas de contre-exemple de Denjoy analytique”, Comptes Rendus de l'Académie des Sciences. Série I Mathématique, 298:7 (1984), 141–144 | Zbl
[9] Graczyk J., Światek G., “Singular measures in circle dynamics”, Communications in Mathematical Physics, 157:2 (1993), 213–230 | DOI | Zbl
[10] Guarino P., Martens M., de Melo W., “Rigidity of critical circle maps”, Duke Mathematical Journal, 167:11 (2018), 2125–2188 | DOI | Zbl
[11] Coelho Z., de Faria E., “Limit laws of entrance times for homeomorphisms of the circle”, Israel Journal of Mathematics, 93:1 (1996), 93–112 | DOI | Zbl
[12] Coelho Z., “The loss of tightness of time distributions for homeomorphisms of the circle”, Transactions of the American Mathematical Society, 356:11 (2004), 4427–4445 | DOI | Zbl
[13] Kim D. H., Seo B. K., “The waiting time for irrational rotations”, Nonlinearity, 16:5 (2003), 1861–1868 | DOI | Zbl
[14] Katznelson Y., Ornstein D., “The absolute continuity of the conjugation of certain diffeomorphisms of the circle”, Ergodic Theory and Dynamical Systems, 9:4 (1989), 681–690 | DOI
[15] Pitskel B., “Poisson limit law for Markov chains”, Ergodic Theory and Dynamical Systems, 11:3 (1991), 501–513 | DOI | Zbl
[16] Bowen R. E., Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Springer, Berlin, 2008 | DOI | Zbl
[17] Collet P., Galves A., “Asymptotic distribution of entrance times for expanding maps of the interval”, Dynamical Systems and Applications, World Scientific, 1995, 139–152 | DOI | Zbl
[18] Vul E. B., Sinai Ya. G., Khanin K. M., “Feigenbaum universality and the thermodynamic formalism”, Russian Mathematical Surveys, 39:3 (1984), 1–40 | DOI | Zbl
[19] Dzhalilov A. A., “Thermodynamic formalism and singular invariant measures for critical circle maps”, Theoretical and Mathematical Physics, 134:2 (2003), 166–180 | DOI | Zbl
[20] Ruelle D., Thermodynamic formalism. The mathematical structure of equilibrium statistical mechanics, Cambridge University Press, Cambridge, 2004 | DOI
[21] Dzhalilov A. A., “Limiting laws for entrance times of critical mappings of a circle”, Theoretical and Mathematical Physics, 138:2 (2004), 190–207 | DOI | Zbl