Holomorphic continuation into a matrix ball of functions defined on a piece of its skeleton
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 2, pp. 296-310 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The question of the possibility of holomorphic continuation into some domain of functions defined on the entire boundary of this domain has been well studied. The problem of describing functions defined on a part of the boundary that can be extended holomorphically into a fixed domain is attracting more interest. In this article, we reformulate the problem under consideration: Under what conditions can we extend holomorphically to a matrix ball the functions given on a part of its skeleton? We describe the domains into which the integral of the Bochner–Hua Luogeng type for a matrix ball can be extended holomorphically. As the main result, we present the criterion of holomorphic continuation into a matrix ball of functions defined on a part of the skeleton of this matrix ball. The proofs of several results are briefly presented. Some recent advances are highlighted. The results obtained in this article generalize the results of L. A. Aizenberg, A. M. Kytmanov and G. Khudayberganov.
Keywords: Shilov's boundary, Bochner–Hua Luogeng integral, Hardy space, holomorphic continuation, orthonormal system.
Mots-clés : matrix ball
@article{VUU_2021_31_2_a9,
     author = {G. Khudayberganov and J. Sh. Abdullayev},
     title = {Holomorphic continuation into a matrix ball of functions defined on a piece of its skeleton},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {296--310},
     year = {2021},
     volume = {31},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a9/}
}
TY  - JOUR
AU  - G. Khudayberganov
AU  - J. Sh. Abdullayev
TI  - Holomorphic continuation into a matrix ball of functions defined on a piece of its skeleton
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2021
SP  - 296
EP  - 310
VL  - 31
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a9/
LA  - en
ID  - VUU_2021_31_2_a9
ER  - 
%0 Journal Article
%A G. Khudayberganov
%A J. Sh. Abdullayev
%T Holomorphic continuation into a matrix ball of functions defined on a piece of its skeleton
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2021
%P 296-310
%V 31
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a9/
%G en
%F VUU_2021_31_2_a9
G. Khudayberganov; J. Sh. Abdullayev. Holomorphic continuation into a matrix ball of functions defined on a piece of its skeleton. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 2, pp. 296-310. http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a9/

[1] Aizenberg L. A., Carleman formulas in complex analysis, Science, Novosibirsk, 1990 | MR

[2] Khenkin G. M., Chirka E. M., “Boundary properties of holomorphic functions of several complex variables”, Journal of Soviet Mathematics, 5:5 (1976), 612–687 | DOI | MR | Zbl | Zbl

[3] Aizenberg L. A., Kytmanov A. M., “On the possibility of holomorphic extension into a domain of function defined on a connected piece of its boundary”, Mathematics of the USSR-Sbornik, 72:2 (1992), 467–483 | DOI | MR | Zbl | Zbl

[4] Khudayberganov G., “On the possibility of holomorphic continuation into a matrix domain of functions defined on a segment of its Shilov boundary”, Doklady Mathematics, 50:3 (1995), 497–499 | MR | Zbl

[5] Shaimkulov B. A., “On holomorphic extendability of functions from part of the Lie sphere to the Lie ball”, Siberian Mathematical Journal, 44:6 (2003), 1105–1110 | DOI | MR | Zbl

[6] Khudayberganov G., Kytmanov A. M., Shaimkulov B. A., Analysis in matrix domains, Siberian Federal University, Krasnoyarsk, 2017

[7] Pinchuk S., Shafikov R., Sukhov A., “Some aspects of holomorphic mappings: a survey”, Proceedings of the Steklov Institute of Mathematics, 298:1 (2017), 212–247 | DOI | DOI | MR | Zbl

[8] Yurieva E. V., “On the extension of analytic sets into a neighborhood of the edge of a wedge in nongeneral position”, Journal of Siberian Federal University. Mathematics and Physics, 6:3 (2013), 376–380

[9] Yurieva E. V., “On the holomorphic extension into a neighborhood of the edge of a wedge in nongeneral position”, Siberian Mathematical Journal, 52:3 (2011), 563–568 | DOI | MR | Zbl

[10] Krantz S. G., Harmonic and complex analysis in several variables, Springer, Cham, 2017 | DOI | MR | Zbl

[11] Cartan E., “Sur les domaines bornés homogènes de l'espace den variables complexes”, Abhandlungen aus dem Mathematischen Seminar der Universit{ä}t Hamburg, 11:1 (1935), 116–162 | DOI | MR

[12] Hua L. K., Harmonic analysis of functions of several complex variables in classical domains, AMS, 1963 | MR

[13] Sergeev A. G., On matrix and Reinhardt domains, Mittag–Leffler Institute, Stockholm, 1988

[14] Khudayberganov G., Khalknazarov A .M., Abdullayev J. Sh., “Laplace and Hua Luogeng operators”, Russian Mathematics, 64:3 (2020), 66–74 | DOI | DOI | Zbl

[15] Kosbergenov S., “On a multidimensional boundary Morera theorem for the matrix ball”, Russian Mathematics, 45:4 (2001), 26–30 | MR | Zbl

[16] Kosbergenov S., “On the Carleman formula for a matrix ball”, Russian Mathematics, 43:1 (1999), 72–75 | MR | Zbl

[17] Khudayberganov G. Kh., Rakhmonov U. S., “The Bergman and Cauchy–Szeg{ő} kernels for matrix ball of the second type”, Journal of Siberian Federal University. Mathematics and Physics, 7:3 (2014), 305–310 | Zbl

[18] Khudayberganov G., Rakhmonov U. S., Matyakubov Z. Q., “Integral formulas for some matrix domains”, Contemporary Mathematics, 2016, 89–95 | DOI | MR | Zbl

[19] Khudayberganov G. Kh., Otemuratov B. P., Rakhmonov U. S., “Boundary Morera theorem for the matrix ball of the third type”, Journal of Siberian Federal University. Mathematics and Physics, 11:1 (2018), 40–45 | DOI | MR | Zbl

[20] Khudayberganov G., Rakhmonov U. S., “Carleman formula for matrix ball of the third type”, Algebra, Complex Analysis, and Pluripotential Theory, USUZCAMP 2017, Springer Proceedings in Mathematics Statistics, 2017, 101–108 | DOI | MR

[21] Rakhmonov U. S., Abdullayev J. Sh., “On volumes of matrix ball of third type and generalized Lie balls”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 29:4 (2019), 548–557 | DOI | MR

[22] Khudayberganov G. K., Abdullayev J. Sh., “Relationship between the kernels Bergman and Cauchy–Szeg{ő} in the domains $\tau ^{+} \left(n-1\right)$ and $\Re _{IV}^{n} $”, Journal of Siberian Federal University. Mathematics and Physics, 13:5 (2020), 559–567 | DOI | MR | Zbl

[23] Myslivets S. G., “On the Szeg{ő} and Poisson kernels in the convex domains in ${{\mathbb{C}}^{n}}$”, Russian Mathematics, 63:1 (2019), 35–41 | DOI | DOI | MR | Zbl

[24] Kytmanov A. M., Nikitina T. N., “Analogs of Carleman's formula for classical domains”, Mathematical notes of the Academy of Sciences of the USSR, 45:3 (1989), 243–248 | DOI | MR | Zbl

[25] Murnaghan F. D., The theory of group representations, Inostr. Lit., M., 1950

[26] Weyl H., The classical groups, Inostr. Lit., M., 1947

[27] J{ö}ricke B., “Continuity of the Cauchy projection in H{ö}lder norms for classical domains”, Mathematische Nachrichten, 113:1 (1983), 227–244 (in Russian) | DOI | MR

[28] Henkin G. M., “The method of integral representations in complex analysis”, Itogi Nauki i Tekhniki. Seriya “Sovremennye Problemy Matematiki. Fundamental'nye Napravleniya”, 7, 1985, 23–124 | Zbl

[29] Pinchuk S. I., “Bogolyubov's theorem on the “edge of the wedge” for generic manifolds”, Mathematics of the USSR-Sbornik, 23:3 (1974), 441–455 | DOI | MR | Zbl

[30] Cartan H., “Sur les fonctions de deux variables complexes et probleme de la representation analytique”, Journal de Mathématiques Pures et Appliquées, ser. 9, 10, 1931, 1–114 | MR