Mots-clés : matrix ball
@article{VUU_2021_31_2_a9,
author = {G. Khudayberganov and J. Sh. Abdullayev},
title = {Holomorphic continuation into a matrix ball of functions defined on a piece of its skeleton},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {296--310},
year = {2021},
volume = {31},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a9/}
}
TY - JOUR AU - G. Khudayberganov AU - J. Sh. Abdullayev TI - Holomorphic continuation into a matrix ball of functions defined on a piece of its skeleton JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2021 SP - 296 EP - 310 VL - 31 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a9/ LA - en ID - VUU_2021_31_2_a9 ER -
%0 Journal Article %A G. Khudayberganov %A J. Sh. Abdullayev %T Holomorphic continuation into a matrix ball of functions defined on a piece of its skeleton %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2021 %P 296-310 %V 31 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a9/ %G en %F VUU_2021_31_2_a9
G. Khudayberganov; J. Sh. Abdullayev. Holomorphic continuation into a matrix ball of functions defined on a piece of its skeleton. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 2, pp. 296-310. http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a9/
[1] Aizenberg L. A., Carleman formulas in complex analysis, Science, Novosibirsk, 1990 | MR
[2] Khenkin G. M., Chirka E. M., “Boundary properties of holomorphic functions of several complex variables”, Journal of Soviet Mathematics, 5:5 (1976), 612–687 | DOI | MR | Zbl | Zbl
[3] Aizenberg L. A., Kytmanov A. M., “On the possibility of holomorphic extension into a domain of function defined on a connected piece of its boundary”, Mathematics of the USSR-Sbornik, 72:2 (1992), 467–483 | DOI | MR | Zbl | Zbl
[4] Khudayberganov G., “On the possibility of holomorphic continuation into a matrix domain of functions defined on a segment of its Shilov boundary”, Doklady Mathematics, 50:3 (1995), 497–499 | MR | Zbl
[5] Shaimkulov B. A., “On holomorphic extendability of functions from part of the Lie sphere to the Lie ball”, Siberian Mathematical Journal, 44:6 (2003), 1105–1110 | DOI | MR | Zbl
[6] Khudayberganov G., Kytmanov A. M., Shaimkulov B. A., Analysis in matrix domains, Siberian Federal University, Krasnoyarsk, 2017
[7] Pinchuk S., Shafikov R., Sukhov A., “Some aspects of holomorphic mappings: a survey”, Proceedings of the Steklov Institute of Mathematics, 298:1 (2017), 212–247 | DOI | DOI | MR | Zbl
[8] Yurieva E. V., “On the extension of analytic sets into a neighborhood of the edge of a wedge in nongeneral position”, Journal of Siberian Federal University. Mathematics and Physics, 6:3 (2013), 376–380
[9] Yurieva E. V., “On the holomorphic extension into a neighborhood of the edge of a wedge in nongeneral position”, Siberian Mathematical Journal, 52:3 (2011), 563–568 | DOI | MR | Zbl
[10] Krantz S. G., Harmonic and complex analysis in several variables, Springer, Cham, 2017 | DOI | MR | Zbl
[11] Cartan E., “Sur les domaines bornés homogènes de l'espace den variables complexes”, Abhandlungen aus dem Mathematischen Seminar der Universit{ä}t Hamburg, 11:1 (1935), 116–162 | DOI | MR
[12] Hua L. K., Harmonic analysis of functions of several complex variables in classical domains, AMS, 1963 | MR
[13] Sergeev A. G., On matrix and Reinhardt domains, Mittag–Leffler Institute, Stockholm, 1988
[14] Khudayberganov G., Khalknazarov A .M., Abdullayev J. Sh., “Laplace and Hua Luogeng operators”, Russian Mathematics, 64:3 (2020), 66–74 | DOI | DOI | Zbl
[15] Kosbergenov S., “On a multidimensional boundary Morera theorem for the matrix ball”, Russian Mathematics, 45:4 (2001), 26–30 | MR | Zbl
[16] Kosbergenov S., “On the Carleman formula for a matrix ball”, Russian Mathematics, 43:1 (1999), 72–75 | MR | Zbl
[17] Khudayberganov G. Kh., Rakhmonov U. S., “The Bergman and Cauchy–Szeg{ő} kernels for matrix ball of the second type”, Journal of Siberian Federal University. Mathematics and Physics, 7:3 (2014), 305–310 | Zbl
[18] Khudayberganov G., Rakhmonov U. S., Matyakubov Z. Q., “Integral formulas for some matrix domains”, Contemporary Mathematics, 2016, 89–95 | DOI | MR | Zbl
[19] Khudayberganov G. Kh., Otemuratov B. P., Rakhmonov U. S., “Boundary Morera theorem for the matrix ball of the third type”, Journal of Siberian Federal University. Mathematics and Physics, 11:1 (2018), 40–45 | DOI | MR | Zbl
[20] Khudayberganov G., Rakhmonov U. S., “Carleman formula for matrix ball of the third type”, Algebra, Complex Analysis, and Pluripotential Theory, USUZCAMP 2017, Springer Proceedings in Mathematics Statistics, 2017, 101–108 | DOI | MR
[21] Rakhmonov U. S., Abdullayev J. Sh., “On volumes of matrix ball of third type and generalized Lie balls”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 29:4 (2019), 548–557 | DOI | MR
[22] Khudayberganov G. K., Abdullayev J. Sh., “Relationship between the kernels Bergman and Cauchy–Szeg{ő} in the domains $\tau ^{+} \left(n-1\right)$ and $\Re _{IV}^{n} $”, Journal of Siberian Federal University. Mathematics and Physics, 13:5 (2020), 559–567 | DOI | MR | Zbl
[23] Myslivets S. G., “On the Szeg{ő} and Poisson kernels in the convex domains in ${{\mathbb{C}}^{n}}$”, Russian Mathematics, 63:1 (2019), 35–41 | DOI | DOI | MR | Zbl
[24] Kytmanov A. M., Nikitina T. N., “Analogs of Carleman's formula for classical domains”, Mathematical notes of the Academy of Sciences of the USSR, 45:3 (1989), 243–248 | DOI | MR | Zbl
[25] Murnaghan F. D., The theory of group representations, Inostr. Lit., M., 1950
[26] Weyl H., The classical groups, Inostr. Lit., M., 1947
[27] J{ö}ricke B., “Continuity of the Cauchy projection in H{ö}lder norms for classical domains”, Mathematische Nachrichten, 113:1 (1983), 227–244 (in Russian) | DOI | MR
[28] Henkin G. M., “The method of integral representations in complex analysis”, Itogi Nauki i Tekhniki. Seriya “Sovremennye Problemy Matematiki. Fundamental'nye Napravleniya”, 7, 1985, 23–124 | Zbl
[29] Pinchuk S. I., “Bogolyubov's theorem on the “edge of the wedge” for generic manifolds”, Mathematics of the USSR-Sbornik, 23:3 (1974), 441–455 | DOI | MR | Zbl
[30] Cartan H., “Sur les fonctions de deux variables complexes et probleme de la representation analytique”, Journal de Mathématiques Pures et Appliquées, ser. 9, 10, 1931, 1–114 | MR