Mots-clés : Gelfand–Levitan–Marchenko equation.
@article{VUU_2021_31_2_a8,
author = {G. U. Urazboev and A. K. Babadjanova and D. R. Saparbaeva},
title = {Integration of the {Harry} {Dym} equation with an integral type source},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {285--295},
year = {2021},
volume = {31},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a8/}
}
TY - JOUR AU - G. U. Urazboev AU - A. K. Babadjanova AU - D. R. Saparbaeva TI - Integration of the Harry Dym equation with an integral type source JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2021 SP - 285 EP - 295 VL - 31 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a8/ LA - en ID - VUU_2021_31_2_a8 ER -
%0 Journal Article %A G. U. Urazboev %A A. K. Babadjanova %A D. R. Saparbaeva %T Integration of the Harry Dym equation with an integral type source %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2021 %P 285-295 %V 31 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a8/ %G en %F VUU_2021_31_2_a8
G. U. Urazboev; A. K. Babadjanova; D. R. Saparbaeva. Integration of the Harry Dym equation with an integral type source. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 2, pp. 285-295. http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a8/
[1] Kruskal M. D., Lecture notes in physics, 38, Springer, Berlin, 1975
[2] Sabatier P. C., “On some spectral problems and isospectral evolutions connected with the classical string problem. II: evolution equation”, Lettere al Nuovo Cimento, 26:15 (1979), 483–486 | DOI | MR | Zbl
[3] Yi-Shen L., “Evolution equations associated with the eigenvalue problem based on the equation $\varphi _{xx} =[v(x)-k^{2} \rho ^{2} (x)]\varphi $”, Lettere al Nuovo Cimento, 70:1 (1982), 1–12 | DOI | MR
[4] Qiao Zh., “A completely integrable system associated with the Harry Dym hierarchy”, Journal of Nonlinear Mathematical Physics, 1:1 (1994), 65–74 | DOI | MR | Zbl
[5] Qiao Zh., “Commutator representations of nonlinear evolution equations: Harry Dym and Kaup-Newell cases”, Journal of Nonlinear Mathematical Physics, 2:2 (1995), 151–157 | DOI | MR | Zbl
[6] Calogero F., Degasperis A., Spectral transform and solitons: Tools to solve and investigate nonlinear evolution equations, v. 1, North-Holland, Amsterdam, 1982 | MR | Zbl
[7] Wadati M., Ichikawa Y. H., Shimizu T., “Cusp soliton of a new integrable nonlinear evolution equation”, Progress of Theoretical Physics, 64:6 (1980), 1959–1967 | DOI | MR | Zbl
[8] Wadati M., Konno K., Ichikawa Y. H., “New integrable nonlinear evolution equations”, Journal of the Physical Society of Japan, 47:5 (1979), 1698–1700 | DOI | MR | Zbl
[9] Shimizu T., “Properties of cusp soliton solution in Harry Dym Equation”, Advanced Studies in Theoretical Physics, 14:5 (2020), 227–235 | DOI
[10] Hongyu L., Jian X., “On the double-pole and two-soliton solutions of the Harry Dym equation”, Applied Mathematics Letters, 104 (2020) | DOI | MR | Zbl
[11] Wen-Xiu M., “An extended Harry Dym hierarchy”, Journal of Physics A: Mathematical and Theoretical, 43:16 (2010), 165202 | DOI | MR | Zbl
[12] Mel'nikov V. K., “Integration method of the Korteweg–de Vries equation with a self-consistent source”, Physics Letters A, 133:9 (1988), 493–496 | DOI | MR