Integration of the Harry Dym equation with an integral type source
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 2, pp. 285-295 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the work, we deduce the evolution of scattering data for a spectral problem associated with the nonlinear evolutionary equation of Harry Dym with a self-consistent source of integral type. The obtained equalities completely determine the scattering data for any $t$, which makes it possible to apply the method of the inverse scattering problem to solve the Cauchy problem for the Harry Dym equation with an integral type source.
Keywords: nonlinear evolution equation, Harry Dym equation, integral source, inverse scattering method
Mots-clés : Gelfand–Levitan–Marchenko equation.
@article{VUU_2021_31_2_a8,
     author = {G. U. Urazboev and A. K. Babadjanova and D. R. Saparbaeva},
     title = {Integration of the {Harry} {Dym} equation with an integral type source},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {285--295},
     year = {2021},
     volume = {31},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a8/}
}
TY  - JOUR
AU  - G. U. Urazboev
AU  - A. K. Babadjanova
AU  - D. R. Saparbaeva
TI  - Integration of the Harry Dym equation with an integral type source
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2021
SP  - 285
EP  - 295
VL  - 31
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a8/
LA  - en
ID  - VUU_2021_31_2_a8
ER  - 
%0 Journal Article
%A G. U. Urazboev
%A A. K. Babadjanova
%A D. R. Saparbaeva
%T Integration of the Harry Dym equation with an integral type source
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2021
%P 285-295
%V 31
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a8/
%G en
%F VUU_2021_31_2_a8
G. U. Urazboev; A. K. Babadjanova; D. R. Saparbaeva. Integration of the Harry Dym equation with an integral type source. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 2, pp. 285-295. http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a8/

[1] Kruskal M. D., Lecture notes in physics, 38, Springer, Berlin, 1975

[2] Sabatier P. C., “On some spectral problems and isospectral evolutions connected with the classical string problem. II: evolution equation”, Lettere al Nuovo Cimento, 26:15 (1979), 483–486 | DOI | MR | Zbl

[3] Yi-Shen L., “Evolution equations associated with the eigenvalue problem based on the equation $\varphi _{xx} =[v(x)-k^{2} \rho ^{2} (x)]\varphi $”, Lettere al Nuovo Cimento, 70:1 (1982), 1–12 | DOI | MR

[4] Qiao Zh., “A completely integrable system associated with the Harry Dym hierarchy”, Journal of Nonlinear Mathematical Physics, 1:1 (1994), 65–74 | DOI | MR | Zbl

[5] Qiao Zh., “Commutator representations of nonlinear evolution equations: Harry Dym and Kaup-Newell cases”, Journal of Nonlinear Mathematical Physics, 2:2 (1995), 151–157 | DOI | MR | Zbl

[6] Calogero F., Degasperis A., Spectral transform and solitons: Tools to solve and investigate nonlinear evolution equations, v. 1, North-Holland, Amsterdam, 1982 | MR | Zbl

[7] Wadati M., Ichikawa Y. H., Shimizu T., “Cusp soliton of a new integrable nonlinear evolution equation”, Progress of Theoretical Physics, 64:6 (1980), 1959–1967 | DOI | MR | Zbl

[8] Wadati M., Konno K., Ichikawa Y. H., “New integrable nonlinear evolution equations”, Journal of the Physical Society of Japan, 47:5 (1979), 1698–1700 | DOI | MR | Zbl

[9] Shimizu T., “Properties of cusp soliton solution in Harry Dym Equation”, Advanced Studies in Theoretical Physics, 14:5 (2020), 227–235 | DOI

[10] Hongyu L., Jian X., “On the double-pole and two-soliton solutions of the Harry Dym equation”, Applied Mathematics Letters, 104 (2020) | DOI | MR | Zbl

[11] Wen-Xiu M., “An extended Harry Dym hierarchy”, Journal of Physics A: Mathematical and Theoretical, 43:16 (2010), 165202 | DOI | MR | Zbl

[12] Mel'nikov V. K., “Integration method of the Korteweg–de Vries equation with a self-consistent source”, Physics Letters A, 133:9 (1988), 493–496 | DOI | MR