@article{VUU_2021_31_2_a7,
author = {V. I. Sumin and M. I. Sumin},
title = {Regularized classical optimality conditions in iterative form for convex optimization problems for distributed {Volterra-type} systems},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {265--284},
year = {2021},
volume = {31},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a7/}
}
TY - JOUR AU - V. I. Sumin AU - M. I. Sumin TI - Regularized classical optimality conditions in iterative form for convex optimization problems for distributed Volterra-type systems JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2021 SP - 265 EP - 284 VL - 31 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a7/ LA - ru ID - VUU_2021_31_2_a7 ER -
%0 Journal Article %A V. I. Sumin %A M. I. Sumin %T Regularized classical optimality conditions in iterative form for convex optimization problems for distributed Volterra-type systems %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2021 %P 265-284 %V 31 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a7/ %G ru %F VUU_2021_31_2_a7
V. I. Sumin; M. I. Sumin. Regularized classical optimality conditions in iterative form for convex optimization problems for distributed Volterra-type systems. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 2, pp. 265-284. http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a7/
[1] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimal Control, Springer, Boston, 1987 | DOI | MR | MR
[2] Vasil'ev F. P., Optimization methods, v. 1, 2, Moscow Center for Continuous Mathematical Education, M., 2011
[3] Sumin M. I., “Regularized parametric Kuhn–Tucker theorem in a Hilbert space”, Computational Mathematics and Mathematical Physics, 51:9 (2011), 1489–1509 | DOI | MR | Zbl
[4] Sumin M. I., “On the stable sequential Kuhn–Tucker theorem and its applications”, Applied Mathematics, 3:10A (2012), 1334–1350 | DOI
[5] Sumin M. I., “Regularized Lagrange principle and Pontryagin maximum principle in optimal control and in inverse problems”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 25, no. 1, 2019, 279–296 (in Russian) | DOI
[6] Sumin M. I., “On the regularization of the classical optimality conditions in convex optimal control problems”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 26, no. 2, 2020, 252–269 (in Russian) | DOI
[7] Warga J., Optimal control of differential and functional equations, Academic Press, New York–London, 1972 | MR | Zbl
[8] Tikhonov A. N., Arsenin V. Ya., Solutions of ill-posed problems, Halsted Press, Washington–Winston–New York, 1977 | MR | MR
[9] Sumin M. I., “Duality-based regularization in a linear convex mathematical programming problem”, Computational Mathematics and Mathematical Physics, 47:4 (2007), 579–600 | DOI | MR | Zbl
[10] Sumin V. I., Functional Volterra equations in the theory of optimal control of distributed systems, Nizhny Novgorod University, Nizhny Novgorod, 1992
[11] Sumin V. I., Chernov A. V., “Operators in spaces of measurable functions: the Volterra property and quasinilpotency”, Differential Equations, 34:10 (1998), 1403–1411 | MR | Zbl
[12] Gokhberg I. Ts., Krein M. G., Theory and applications of Volterra operators in Hilbert space, American Mathematical Society, Providence, 1970 | MR | Zbl
[13] Sumin V. I., “Volterra functional-operator equations in the theory of optimal control of distributed systems”, Sov. Math., Dokl., 39:2 (1989), 374–378 | MR | Zbl
[14] Sumin V., “Volterra functional-operator equations in the theory of optimal control of distributed systems”, IFAC-PapersOnLine, 51:32 (2018), 759–764 | DOI
[15] Sumin V. I., “Controlled Volterra functional equations and the contraction mapping principle”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 25, no. 1, 2019, 262–278 (in Russian) | DOI
[16] Kuterin F. A., Sumin M. I., “The regularized iterative Pontryagin maximum principle in optimal control. II. Optimization of a distributed system”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 27:1 (2017), 26–41 (in Russian) | DOI | MR | Zbl
[17] Ioffe A. D., Tikhomirov V. M., Theory of extremal problems, North-Holland Publishing Company, Amsterdam–New York–Oxford, 1979 | MR | Zbl
[18] Dmitruk A. V., Convex analysis. Elementary introductory course, MAKS Press, M., 2012