Keywords: modulus of conditional correctness, ill-posed problem.
@article{VUU_2021_31_2_a6,
author = {A. I. Sidikova and A. S. Sushkov},
title = {Numerical solution of the inverse boundary value heat transfer problem for an inhomogeneous rod},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {253--264},
year = {2021},
volume = {31},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a6/}
}
TY - JOUR AU - A. I. Sidikova AU - A. S. Sushkov TI - Numerical solution of the inverse boundary value heat transfer problem for an inhomogeneous rod JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2021 SP - 253 EP - 264 VL - 31 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a6/ LA - ru ID - VUU_2021_31_2_a6 ER -
%0 Journal Article %A A. I. Sidikova %A A. S. Sushkov %T Numerical solution of the inverse boundary value heat transfer problem for an inhomogeneous rod %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2021 %P 253-264 %V 31 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a6/ %G ru %F VUU_2021_31_2_a6
A. I. Sidikova; A. S. Sushkov. Numerical solution of the inverse boundary value heat transfer problem for an inhomogeneous rod. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 2, pp. 253-264. http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a6/
[1] Alifanov O. M., Artyukhin E. A., Rumyantsev S. V., Extreme methods for solving ill-posed problems and their application to inverse problems of heat transfer, Nauka, M., 1988
[2] Romanov V. G., “An inverse phaseless problem for electrodynamic equations in an anisotropic medium”, Doklady Akademii Nauk, 488:4 (2019), 367–371 (in Russian) | DOI | Zbl
[3] Hasanov A., Itou H., “A priori estimates for the general dynamic Euler–Bernoulli beam equation: Supported and cantilever beams”, Applied Mathematics Letters, 87 (2019), 141–146 | DOI | MR | Zbl
[4] Prilepko A. I., Kamynin V. L., Kostin A. B., “Inverse source problem for parabolic equation with the condition of integral observation in time”, Journal of Inverse and Ill-posed Problems, 26:4 (2018), 523–539 | DOI | MR | Zbl
[5] Danilin A. R., “Asymptotics of the solution of a bisingular optimal boundary control problem in a bounded domain”, Computational Mathematics and Mathematical Physics, 58:11 (2018), 1737–1747 | DOI | DOI | MR | Zbl
[6] Vasin V. V., Belyaev V. V., “Approximation of solution components for ill-posed problems by the Tikhonov method with total variation”, Doklady Mathematics, 97:3 (2018), 266–270 | DOI | MR | Zbl
[7] Pektas B., Tamci E., “The heat flux identification problem for a nonlinear parabolic equation in 2D”, Journal of Computational and Applied Mathematics, 312 (2017), 134–142 | DOI | MR | Zbl
[8] Hasanov A., “An inverse source problem with single Dirichlet type measured output data for a linear parabolic equation”, Applied Mathematics Letters, 24:7 (2011), 1269–1273 | DOI | MR | Zbl
[9] Korotkii A. I., Kovtunov D. A., “Optimal boundary control of a system describing thermal convection”, Proceedings of the Steklov Institute of Mathematics, 272, suppl. 1 (2011), 74–100 | DOI | MR | Zbl
[10] Korolev Yu. M. , Kubo H., Yagola A. G., “Parameter identification problem for a parabolic equation — application to the Black–Scholes option pricing model”, Journal of Inverse and Ill-posed Problems, 20:3 (2012), 327–337 | DOI | MR | Zbl
[11] Kabanikhin S. I., Inverse and Ill-posed problems, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 2018 | DOI
[12] Lavrent'ev M. M., Romanov V. G., Shishatskii S. P., Some problems of mathematical physics and analysis, Nauka, M., 1980 | MR
[13] Denisov V. Ya., Introduction to the theory of inverse problems, Mocsow State University, M., 1994 | MR
[14] Denisov A. M., “Uniqueness and nonuniqueness of the solution to the problem of determining the source in the heat equation”, Computational Mathematics and Mathematical Physics, 56:10 (2016), 1737–1742 | DOI | DOI | MR | Zbl
[15] Tanana V. R., “A comparison of error estimates at a point and on a set when solving ill-posed problems”, Journal of Inverse and Ill-posed Problems, 26:4 (2018), 541–550 | DOI | MR | Zbl
[16] Tikhonov A. N., Glasko V. B., “Methods of determining the surface temperature of a body”, USSR Computational Mathematics and Mathematical Physics, 7:4 (1967), 267–273 | DOI | Zbl
[17] Tanana V. P., “On reducing an inverse boundary-value problem to the synthesis of two ill-posed problems and their solution”, Numerical Analysis and Applications, 13:2 (2020), 180–192 | DOI | DOI | MR
[18] Yagola A. G., Titarenko V. N., Stepanova I. E., Van Yanfei, Inverse problems and methods for their solution, BINOM, M., 2014
[19] Lavrent'ev M. M., On some ill-posed problems of mathematical physics, Nauka, Novosibirsk, 1962
[20] Landis E. M., “Some questions in the qualitative theory of elliptic and parabolic equations”, Six Papers on Partial Differential Equations, American Mathematical Society, 1962, 173–238 | MR | MR | Zbl | Zbl
[21] Tanana V. P., Ershova A. A., “On the solution of an inverse boundary value problem for composite materials”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 28:4 (2018), 474–488 | DOI | MR | Zbl
[22] Ivanov V. K., Vasin V. V., Tanana V. P., Theory of linear ill-posed problems and its applications, De Gruyter, 2002 | DOI | MR