@article{VUU_2021_31_2_a5,
author = {M. I. Ramazanov and N. K. Gulmanov},
title = {On the singular {Volterra} integral equation of the boundary value problem for heat conduction in a degenerating domain},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {241--252},
year = {2021},
volume = {31},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a5/}
}
TY - JOUR AU - M. I. Ramazanov AU - N. K. Gulmanov TI - On the singular Volterra integral equation of the boundary value problem for heat conduction in a degenerating domain JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2021 SP - 241 EP - 252 VL - 31 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a5/ LA - ru ID - VUU_2021_31_2_a5 ER -
%0 Journal Article %A M. I. Ramazanov %A N. K. Gulmanov %T On the singular Volterra integral equation of the boundary value problem for heat conduction in a degenerating domain %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2021 %P 241-252 %V 31 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a5/ %G ru %F VUU_2021_31_2_a5
M. I. Ramazanov; N. K. Gulmanov. On the singular Volterra integral equation of the boundary value problem for heat conduction in a degenerating domain. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 2, pp. 241-252. http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a5/
[1] Kheloufi A., Sadallah B.-K., “On the regularity of the heat equation solution in non-cylindrical domains: Two approaches”, Applied Mathematics and Computation, 218:5 (2011), 1623–1633 | DOI | MR | Zbl
[2] Kheloufi A., “Existence and uniqueness results for parabolic equations with Robin type boundary conditions in a non-regular domain of $\mathbb R^3$”, Applied Mathematics and Computation, 220 (2013), 756–769 | DOI | MR | Zbl
[3] Cherfaoui S., Kessab A., Kheloufi A., “Well-posedness and regularity results for a $2m$-th order parabolic equation in symmetric conical domains of $\mathbb{R}^{N+1}$”, Mathematical Methods in the Applied Sciences, 40:16 (2017), 6035–6047 | DOI | MR | Zbl
[4] Kheloufi A., “On a fourth order parabolic equation in a nonregular domain of $\mathbb{R}^3$”, Mediterranean Journal of Mathematics, 12:3 (2014), 803–820 | DOI | MR
[5] Kheloufi A., Sadallah B.-K., “Study of the heat equation in a symmetric conical type domain of $\mathbb{R}^{N+1}$”, Mathematical Methods in the Applied Sciences, 37:12 (2014), 1807–1818 | DOI | MR | Zbl
[6] Chapko R., Johansson B. T., Vavrychuk V., “Numerical solution of parabolic Cauchy problems in planar corner domains”, Mathematics and Computers in Simulation, 101 (2014), 1–12 | DOI | MR | Zbl
[7] Wang Y., Huang J., Wen X., “Two-dimensional Euler polynomials solutions of two-dimensional Volterra integral equations of fractional order”, Applied Numerical Mathematics, 163 (2021), 77–95 | DOI | MR | Zbl
[8] Dehbozorgi R., Nedaiasl K., “Numerical solution of nonlinear weakly singular Volterra integral equations of the first kind: An hp-version collocation approach”, Applied Numerical Mathematics, 161 (2021), 111–135 | DOI | MR
[9] Kavokin A. A., Kulakhmetova A. T., Shpadi Y. R., “Application of thermal potentials to the solution of the problem of heat conduction in a region degenerates at the initial moment”, Filomat, 32:3 (2018), 825–836 | DOI | MR
[10] Amangalieva M. M., Akhmanova D. M., Dzhenaliev M. T., Ramazanov M. I., “Boundary value problems for a spectrally loaded heat operator with load line approaching the time axis at zero or infinity”, Differential Equations, 47:2 (2011), 231–243 | DOI | MR | Zbl
[11] Jenaliyev M., Amangaliyeva M., Kosmakova M., Ramazanov M., “On a Volterra equation of the second kind with “incompressible” kernel”, Advances in Difference Equations, 2015:1 (2015), 71 | DOI | MR
[12] Amangalieva M. M., Dzhenaliev M. T., Kosmakova M. T., Ramazanov M. I., “On one homogeneous problem for the heat equation in an infinite angular domain”, Siberian Mathematical Journal, 56:6 (2015), 982–995 | DOI | MR | Zbl
[13] Jenaliyev M., Ramazanov M., “On a homogeneous parabolic problem in an infinite corner domain”, Filomat, 32:3 (2018), 965–974 | DOI | MR
[14] Baderko E. A., “Parabolic problems and boundary integral equations”, Mathematical Methods in the Applied Sciences, 20:5 (1997), 449–459 | DOI | MR | Zbl
[15] Polyanin A. D., Manzhirov A. V., Handbook of integral equations, CRC Press, Boca Raton, 2008 | MR | Zbl
[16] Ditkin V. A., Prudnikov A. P., Operational calculus handbook, Vysshaya shkola, M., 1965 | MR
[17] Gradshteyn I. S., Ryzhik I. M., Table of integrals, series, and products, Academic Press, 2014 | MR
[18] Lavrent'ev M. A., Shabat B. V., Methods of the theory of function of complex variable, Nauka, M., 1973 | MR