On the singular Volterra integral equation of the boundary value problem for heat conduction in a degenerating domain
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 2, pp. 241-252 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we consider a singular Volterra type integral equation of the second kind, to which some boundary value problems of heat conduction in domains with a boundary varying with time are reduced by the method of thermal potentials. The peculiarity of such problems is that the domain degenerates into a point at the initial moment of time. Accordingly, a distinctive feature of the integral equation under study is that the integral of the kernel, as the upper limit of integration tends to the lower one, is not equal to zero. This circumstance does not allow solving this equation by the method of successive approximations. We constructed the general solution of the corresponding characteristic equation and found the solution of the complete integral equation by the Carleman–Vekua method of equivalent regularization. It is shown that the corresponding homogeneous integral equation has a nonzero solution.
Keywords: integral equation, a singular Volterra type integral equation of the second kind, Carleman–Vekua regularization method.
@article{VUU_2021_31_2_a5,
     author = {M. I. Ramazanov and N. K. Gulmanov},
     title = {On the singular {Volterra} integral equation of the boundary value problem for heat conduction in a degenerating domain},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {241--252},
     year = {2021},
     volume = {31},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a5/}
}
TY  - JOUR
AU  - M. I. Ramazanov
AU  - N. K. Gulmanov
TI  - On the singular Volterra integral equation of the boundary value problem for heat conduction in a degenerating domain
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2021
SP  - 241
EP  - 252
VL  - 31
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a5/
LA  - ru
ID  - VUU_2021_31_2_a5
ER  - 
%0 Journal Article
%A M. I. Ramazanov
%A N. K. Gulmanov
%T On the singular Volterra integral equation of the boundary value problem for heat conduction in a degenerating domain
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2021
%P 241-252
%V 31
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a5/
%G ru
%F VUU_2021_31_2_a5
M. I. Ramazanov; N. K. Gulmanov. On the singular Volterra integral equation of the boundary value problem for heat conduction in a degenerating domain. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 2, pp. 241-252. http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a5/

[1] Kheloufi A., Sadallah B.-K., “On the regularity of the heat equation solution in non-cylindrical domains: Two approaches”, Applied Mathematics and Computation, 218:5 (2011), 1623–1633 | DOI | MR | Zbl

[2] Kheloufi A., “Existence and uniqueness results for parabolic equations with Robin type boundary conditions in a non-regular domain of $\mathbb R^3$”, Applied Mathematics and Computation, 220 (2013), 756–769 | DOI | MR | Zbl

[3] Cherfaoui S., Kessab A., Kheloufi A., “Well-posedness and regularity results for a $2m$-th order parabolic equation in symmetric conical domains of $\mathbb{R}^{N+1}$”, Mathematical Methods in the Applied Sciences, 40:16 (2017), 6035–6047 | DOI | MR | Zbl

[4] Kheloufi A., “On a fourth order parabolic equation in a nonregular domain of $\mathbb{R}^3$”, Mediterranean Journal of Mathematics, 12:3 (2014), 803–820 | DOI | MR

[5] Kheloufi A., Sadallah B.-K., “Study of the heat equation in a symmetric conical type domain of $\mathbb{R}^{N+1}$”, Mathematical Methods in the Applied Sciences, 37:12 (2014), 1807–1818 | DOI | MR | Zbl

[6] Chapko R., Johansson B. T., Vavrychuk V., “Numerical solution of parabolic Cauchy problems in planar corner domains”, Mathematics and Computers in Simulation, 101 (2014), 1–12 | DOI | MR | Zbl

[7] Wang Y., Huang J., Wen X., “Two-dimensional Euler polynomials solutions of two-dimensional Volterra integral equations of fractional order”, Applied Numerical Mathematics, 163 (2021), 77–95 | DOI | MR | Zbl

[8] Dehbozorgi R., Nedaiasl K., “Numerical solution of nonlinear weakly singular Volterra integral equations of the first kind: An hp-version collocation approach”, Applied Numerical Mathematics, 161 (2021), 111–135 | DOI | MR

[9] Kavokin A. A., Kulakhmetova A. T., Shpadi Y. R., “Application of thermal potentials to the solution of the problem of heat conduction in a region degenerates at the initial moment”, Filomat, 32:3 (2018), 825–836 | DOI | MR

[10] Amangalieva M. M., Akhmanova D. M., Dzhenaliev M. T., Ramazanov M. I., “Boundary value problems for a spectrally loaded heat operator with load line approaching the time axis at zero or infinity”, Differential Equations, 47:2 (2011), 231–243 | DOI | MR | Zbl

[11] Jenaliyev M., Amangaliyeva M., Kosmakova M., Ramazanov M., “On a Volterra equation of the second kind with “incompressible” kernel”, Advances in Difference Equations, 2015:1 (2015), 71 | DOI | MR

[12] Amangalieva M. M., Dzhenaliev M. T., Kosmakova M. T., Ramazanov M. I., “On one homogeneous problem for the heat equation in an infinite angular domain”, Siberian Mathematical Journal, 56:6 (2015), 982–995 | DOI | MR | Zbl

[13] Jenaliyev M., Ramazanov M., “On a homogeneous parabolic problem in an infinite corner domain”, Filomat, 32:3 (2018), 965–974 | DOI | MR

[14] Baderko E. A., “Parabolic problems and boundary integral equations”, Mathematical Methods in the Applied Sciences, 20:5 (1997), 449–459 | DOI | MR | Zbl

[15] Polyanin A. D., Manzhirov A. V., Handbook of integral equations, CRC Press, Boca Raton, 2008 | MR | Zbl

[16] Ditkin V. A., Prudnikov A. P., Operational calculus handbook, Vysshaya shkola, M., 1965 | MR

[17] Gradshteyn I. S., Ryzhik I. M., Table of integrals, series, and products, Academic Press, 2014 | MR

[18] Lavrent'ev M. A., Shabat B. V., Methods of the theory of function of complex variable, Nauka, M., 1973 | MR