Stability analysis for the Lienard equation with discontinuous coefficients
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 2, pp. 226-240

Voir la notice de l'article provenant de la source Math-Net.Ru

A nonlinear mechanical system, whose dynamics is described by a vector ordinary differential equation of the Lienard type, is considered. It is assumed that the coefficients of the equation can switch from one set of constant values to another, and the total number of these sets is, in general, infinite. Thus, piecewise constant functions with infinite number of break points on the entire time axis, are used to set the coefficients of the equation. A method for constructing a discontinuous Lyapunov function is proposed, which is applied to obtain sufficient conditions of the asymptotic stability of the zero equilibrium position of the equation studied. The results found are generalized to the case of a nonstationary Lienard equation with discontinuous coefficients of a more general form. As an auxiliary result of the work, some methods for analyzing the question of sign-definiteness and approaches to obtaining estimates for algebraic expressions, that represent the sum of power-type terms with non-stationary coefficients, are developed. The key feature of the study is the absence of assumptions about the boundedness of these non-stationary coefficients or their separateness from zero. Some examples are given to illustrate the established results.
Keywords: nonlinear mechanical systems, discontinuous coefficients, asymptotic stability, Lyapunov functions.
@article{VUU_2021_31_2_a4,
     author = {A. V. Platonov},
     title = {Stability analysis for the {Lienard} equation with discontinuous coefficients},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {226--240},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a4/}
}
TY  - JOUR
AU  - A. V. Platonov
TI  - Stability analysis for the Lienard equation with discontinuous coefficients
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2021
SP  - 226
EP  - 240
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a4/
LA  - ru
ID  - VUU_2021_31_2_a4
ER  - 
%0 Journal Article
%A A. V. Platonov
%T Stability analysis for the Lienard equation with discontinuous coefficients
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2021
%P 226-240
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a4/
%G ru
%F VUU_2021_31_2_a4
A. V. Platonov. Stability analysis for the Lienard equation with discontinuous coefficients. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 2, pp. 226-240. http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a4/