@article{VUU_2021_31_2_a4,
author = {A. V. Platonov},
title = {Stability analysis for the {Lienard} equation with discontinuous coefficients},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {226--240},
year = {2021},
volume = {31},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a4/}
}
TY - JOUR AU - A. V. Platonov TI - Stability analysis for the Lienard equation with discontinuous coefficients JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2021 SP - 226 EP - 240 VL - 31 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a4/ LA - ru ID - VUU_2021_31_2_a4 ER -
%0 Journal Article %A A. V. Platonov %T Stability analysis for the Lienard equation with discontinuous coefficients %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2021 %P 226-240 %V 31 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a4/ %G ru %F VUU_2021_31_2_a4
A. V. Platonov. Stability analysis for the Lienard equation with discontinuous coefficients. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 2, pp. 226-240. http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a4/
[1] Matrosov V. M., The method of vector Lyapunov functions: the analysis of a dynamical properties of nonlinear systems, Fizmatlit, M., 2001
[2] Vulfson I. I. Description of nonlinear dissipative forces under limited starting information, The Theory of Mechanisms and Machines, 1:1 (2003), 70–77 (in Russian) | MR
[3] Kozlov V. V., “On the stability of equilibrium positions in non-stationary force fields”, Journal of Applied Mathematics and Mechanics, 55:1 (1991), 14–19 | DOI | MR | MR | Zbl
[4] Hatvani L., “The effect of damping on the stability properties of equilibria of non-autonomous systems”, Journal of Applied Mathematics and Mechanics, 65:4 (2001), 707–713 | DOI | MR | Zbl
[5] Sun J., Wang Q.-G., Zhong Q.-C., “A less conservative stability test for second-order linear time-varying vector differential equations”, International Journal of Control, 80:4 (2007), 523–526 | DOI | MR | Zbl
[6] Aleksandrov A. Yu., “The stability of the equilibrium positions of non-linear non-autonomous mechanical systems”, Journal of Applied Mathematics and Mechanics, 71:3 (2007), 324–338 | DOI | MR | MR | Zbl
[7] Andreyev A. S., “The stability of the equilibrium position of a non-autonomous mechanical system”, Journal of Applied Mathematics and Mechanics, 60:3 (1996), 381–389 | DOI | MR | Zbl
[8] Liberzon D., Switching in systems and control, Birkh{ä}user, Boston, 2003 | DOI | MR | Zbl
[9] Shorten R., Wirth F., Mason O., Wulf K., King G., “Stability criteria for switched and hybrid systems”, SIAM Review, 49:4 (2007), 545–592 | DOI | MR | Zbl
[10] Zhai G., Hu B., Yasuda K., Michel A. N., “Disturbance attention properties of time-controlled switched systems”, Journal of the Franklin Institute, 338:7 (2001), 765–779 | DOI | MR | Zbl
[11] Ding X., Liu X., “On stabilizability of switched positive linear systems under state-dependent switching”, Applied Mathematics and Computation, 307 (2017), 92–101 | DOI | MR | Zbl
[12] Xiang W., Xiao J., “Stabilization of switched continuous-time systems with all modes unstable via dwell time switching”, Automatica, 50:3 (2014), 940–945 | DOI | MR | Zbl
[13] Yang H., Jiang B., Cocquempot V., “A survey of results and perspectives on stabilization of switched nonlinear systems with unstable modes”, Nonlinear Analysis: Hybrid Systems, 13 (2014), 45–60 | DOI | MR | Zbl
[14] Larina Ya. Yu., Rodina L. I., “Asymptotically stable sets of control systems with impulse actions”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 26:4 (2016), 490–502 (in Russian) | DOI | MR | Zbl
[15] Cruz-Zavala E., Moreno J. A., “Homogeneous high order sliding mode design: a Lyapunov approach”, Automatica, 80 (2017), 232–238 | DOI | MR | Zbl
[16] Wang R., Xing J., Xiang Z., “Finite-time stability and stabilization of switched nonlinear systems with asynchronous switching”, Applied Mathematics and Computation, 316 (2018), 229–244 | DOI | MR | Zbl
[17] Wang F., Zhang X., Chen B., Lin C., Li X., Zhang J., “Adaptive finite-time tracking control of switched nonlinear systems”, Information Sciences, 421 (2017), 126–135 | DOI | MR | Zbl
[18] Shen Y., Huang Y., Gu J., “Global finite-time observers for Lipschitz nonlinear systems”, IEEE Transactions on Automatic Control, 56:2 (2011), 418–424 | DOI | MR | Zbl
[19] Zhang B., “On finite-time stability of switched systems with hybrid homogeneous degrees”, Mathematical Problems in Engineering, 2018 (2018), 1–7 | DOI | MR
[20] Platonov A. V., “On the asymptotic stability of nonlinear time-varying switched systems”, Journal of Computer and Systems Sciences International, 57:6 (2018), 854–863 | DOI | DOI | Zbl
[21] Platonov A. V., “Stability analysis for nonstationary switched systems”, Russian Mathematics, 64:2 (2020), 56–65 | DOI | DOI | MR | Zbl
[22] Zubov V. I., Methods of A. M. Lyapunov and their applications, Noordhoff Ltd, Groningen, 1964 | MR
[23] Aleksandrov A. Yu., Aleksandrova E. B., Lakrisenko P. A., Platonov A. V., Chen Y., “Asymptotic stability conditions for some classes of mechanical systems with switched nonlinear force fields”, Nonlinear Dynamics and Systems Theory, 15:2 (2015), 127–140 | MR | Zbl