@article{VUU_2021_31_2_a3,
author = {I. O. Osipov},
title = {On the convexity of the reachable set with respect to a part of coordinates at small time intervals},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {210--225},
year = {2021},
volume = {31},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a3/}
}
TY - JOUR AU - I. O. Osipov TI - On the convexity of the reachable set with respect to a part of coordinates at small time intervals JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2021 SP - 210 EP - 225 VL - 31 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a3/ LA - ru ID - VUU_2021_31_2_a3 ER -
%0 Journal Article %A I. O. Osipov %T On the convexity of the reachable set with respect to a part of coordinates at small time intervals %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2021 %P 210-225 %V 31 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a3/ %G ru %F VUU_2021_31_2_a3
I. O. Osipov. On the convexity of the reachable set with respect to a part of coordinates at small time intervals. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 2, pp. 210-225. http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a3/
[1] Kurzhanski A. B., Varaiya P., Dynamics and control of trajectory tubes. Theory and computation, Birkh{ä}user, Basel, 2014 | DOI | MR | Zbl
[2] Vdovin S. A., Taras'yev A. M., Ushakov V. N., “Construction of the attainability set of a Brockett integrator”, Journal of Applied Mathematics and Mechanics, 68:5 (2004), 631–646 | DOI | MR | MR | Zbl
[3] Patsko V. S., Pyatko S. G., Fedotov A. A., “Three-dimensional reachability set for a nonlinear control system”, Journal of Computer and Systems Sciences International, 42:3 (2003), 320–328 | MR | Zbl
[4] Gornov A. Yu., Computational technologies for solving optimal control problems, Nauka, Novosibirsk, 2009
[5] Guseinov K. G., Ozer O., Akyar E., Ushakov V. N., “The approximation of reachable sets of control systems with integral constraint on controls”, Nonlinear Differential Equations and Applications, 14:1–2 (2007), 57–73 | DOI | MR | Zbl
[6] Filippova T. F., “Ellipsoidal estimates of reachable sets for control systems with nonlinear terms”, IFAC-PapersOnLine, 50:1 (2017), 15355–15360 | DOI | MR
[7] Polyak B. T., “Sonvexity of the reachable set of nonlinear systems under L2 bounded controls”, Dynamics of Continuous, Discrete and Impulsive Systems. Ser. A: Mathematical Analysis, 11 (2004), 255–267 | MR | Zbl
[8] Polyak B. T., “Local programming”, Comput. Math. Math. Phys., 41:9 (2001), 1259–1266 | MR | Zbl
[9] Gusev M. I., “On convexity of reachable sets of a nonlinear system under integral constraints”, IFAC-PapersOnLine, 51:32 (2018), 207–212 | DOI
[10] Gusev M. I., Osipov I. O., “Asymptotic behavior of reachable sets on small time intervals”, Proceedings of the Steklov Institute of Mathematics, 309, suppl. 1 (2020), 52–64 | DOI | DOI | MR
[11] Goncharova E., Ovseevich A., “Small-time reachable sets of linear systems with integral control constraints: birth of the shape of a reachable set”, Journal of Optimization Theory and Applications, 168:2 (2016), 615–624 | DOI | MR | Zbl
[12] Gusev M. I., “The limits of applicability of the linearization method in calculating small-time reachable sets”, Ural Mathematical Journal, 6:1 (2020), 71–83 | DOI | MR | Zbl
[13] Gusev M. I., “Estimates of the minimal eigenvalue of the controllability Gramian for a system containing a small parameter”, Mathematical Optimization Theory and Operations Research, Springer, Cham, 2019, 461–473 | DOI | Zbl
[14] Cockayne E. J., Hall G. W. C., “Plane motion of a particle subject to curvature constraints”, SIAM Journal on Control, 13:1 (1975), 197–220 | DOI | MR | Zbl
[15] Patsko V. S., Fedotov A. A., “Attainability set at instant for one-side turning Dubins car”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 24, no. 1, 2018, 143–155 (in Russian) | DOI | MR
[16] Zykov I. V., Osipov I. O., A program for constructing the reachable sets of nonlinear systems with integral control constraints by the Monte Carlo method, certificate of state registration of a computer program No 2020661557, 2020
[17] Zykov I. V., “An algorithm for constructing reachable sets for systems with multiple integral constraints”, Mathematical Analysis With Applications, Springer, Cham, 2020, 51–60 | DOI | MR | Zbl