Mots-clés : the Boutet de Monvel calculus, Hölder–Zygmund space
@article{VUU_2021_31_2_a2,
author = {V. D. Kryakvin and G. P. Omarova},
title = {The {Boutet} de {Monvel} operators in variable {H\"older{\textendash}Zygmund} spaces on $\mathbb{R}^{n}_+$},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {194--209},
year = {2021},
volume = {31},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a2/}
}
TY - JOUR
AU - V. D. Kryakvin
AU - G. P. Omarova
TI - The Boutet de Monvel operators in variable Hölder–Zygmund spaces on $\mathbb{R}^{n}_+$
JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY - 2021
SP - 194
EP - 209
VL - 31
IS - 2
UR - http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a2/
LA - en
ID - VUU_2021_31_2_a2
ER -
%0 Journal Article
%A V. D. Kryakvin
%A G. P. Omarova
%T The Boutet de Monvel operators in variable Hölder–Zygmund spaces on $\mathbb{R}^{n}_+$
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2021
%P 194-209
%V 31
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a2/
%G en
%F VUU_2021_31_2_a2
V. D. Kryakvin; G. P. Omarova. The Boutet de Monvel operators in variable Hölder–Zygmund spaces on $\mathbb{R}^{n}_+$. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 2, pp. 194-209. http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a2/
[1] Beals R., “$L_p$ and H{ö}lder estimates for pseudodifferential operators: sufficient conditions”, Annales de l'Institut Fourier, 29:3 (1979), 239–260 | DOI | MR | Zbl
[2] Beals R., “$L_p$ and H{ö}lder estimates for pseudodifferential operators: necessary conditions”, Harmonic analysis in Euclidean spaces, AMS, Providence, R.I., 1979, 153–157 | DOI | MR
[3] Brenner A. V., Shargorodsky E. M., “Boundary value problems for elliptic pseudodifferential operators”, Partial differential equations, IX, Springer, Berlin, 1997, 145–215 | DOI | MR
[4] Eskin G. I., Boundary value problems for elliptic pseudodifferential equations, AMS, Providence, R.I., 1981 | MR | Zbl
[5] Grubb G., Functional calculus of pseudo-differential boundary problems, Birkh{ä}user, Boston, 1986, 14–124 | DOI | MR
[6] Grubb G., “Pseudo-differential boundary problems in $L_p$-spaces”, Communications in Partial Differential Equations, 15:3 (1990), 289–340 | DOI | MR | Zbl
[7] H{ö}rmander L., The analysis of linear partial differential operators, v. III, Pseudo-differential operators, Springer, Berlin, 2007 | DOI | MR
[8] Johnsen J., “Elliptic boundary problems and the Boutet de Monvel calculus in Besov and Triebel–Lizorkin spaces”, Mathematica Scandinavica, 79 (1996), 25–85 | DOI | MR | Zbl
[9] Kryakvin V. D., “Boundedness of pseudodifferential operators in H{ö}lder–Zygmund spaces of variable order”, Siberian Mathematical Journal, 55:6 (2014), 1073–1083 | DOI | MR | Zbl
[10] Kryakvin V., Omarova G., “Spectral invariance for pseudodifferential operators in H{ö}lder–Zygmund spaces of the variable smoothness”, Journal of Pseudo-Differential Operators and Applications, 9:1 (2018), 95–104 | DOI | MR | Zbl
[11] Kryakvin V., Rabinovich V., “Pseudodifferential operators in weighted H{ö}lder–Zygmund spaces of the variable smoothness”, Large truncated Toeplitz matrices, Toeplitz operators, and related topics, Birkh{ä}user, Cham, 2017, 511–531 | DOI | MR | Zbl
[12] Monvel L. B., “Boundary problems for pseudo-differential operators”, Acta Mathematica, 126 (1971), 11–51 | DOI | MR | Zbl
[13] Rempel S., Schulze B.-W., Index theory of elliptic boundary problems, Akademie Verlag, Berlin, 1982 | MR | MR | Zbl
[14] Stein E. M., Harmonic analysis, PMS, 43, Princeton University Press, Princeton, 1993 | DOI | MR | Zbl
[15] Triebel H., Theory of function spaces, Birkh{ä}user, Basel, 1983 | DOI | MR | Zbl