On totally global solvability of evolutionary equation with unbounded operator
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 2, pp. 331-349 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $X$ be a Hilbert space, $U$ be a Banach space, $G\colon X\to X$ be a linear operator such that the operator $B_\lambda=\lambda I-G$ is maximal monotone with some (arbitrary given) $\lambda\in\mathbb{R}$. For the Cauchy problem associated with controlled semilinear evolutionary equation as follows \begin{gather*} x^\prime(t)=Gx(t)+f\bigl( t,x(t),u(t)\bigr), t\in[0;T]; x(0)=x_0\in X, \end{gather*} where $u=u(t)\colon[0;T]\to U$ is a control, $x(t)$ is unknown function with values in $X$, we prove the totally (with respect to a set of admissible controls) global solvability subject to global solvability of the Cauchy problem associated with some ordinary differential equation in the space $\mathbb{R}$. Solution $x$ is treated in weak sense and is sought in the space $\mathbb{C}_w\bigl([0;T];X\bigr)$ of weakly continuous functions. In fact, we generalize a similar result having been proved by the author formerly for the case of bounded operator $G$. The essence of this generalization consists in that postulated properties of the operator $B_\lambda$ give us the possibility to construct Yosida approximations for it by bounded linear operators and thus to extend required estimates from “bounded” to “unbounded” case. As examples, we consider initial boundary value problems associated with the heat equation and the wave equation.
Keywords: semilinear evolutionary equation in a Hilbert space, maximal monotone operator, totally global solvability.
@article{VUU_2021_31_2_a11,
     author = {A. V. Chernov},
     title = {On totally global solvability of evolutionary equation with unbounded operator},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {331--349},
     year = {2021},
     volume = {31},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a11/}
}
TY  - JOUR
AU  - A. V. Chernov
TI  - On totally global solvability of evolutionary equation with unbounded operator
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2021
SP  - 331
EP  - 349
VL  - 31
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a11/
LA  - ru
ID  - VUU_2021_31_2_a11
ER  - 
%0 Journal Article
%A A. V. Chernov
%T On totally global solvability of evolutionary equation with unbounded operator
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2021
%P 331-349
%V 31
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a11/
%G ru
%F VUU_2021_31_2_a11
A. V. Chernov. On totally global solvability of evolutionary equation with unbounded operator. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 2, pp. 331-349. http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a11/

[1] Chernov A. V., “A majorant criterion for the total preservation of global solvability of controlled functional operator equation”, Russian Mathematics, 55:3 (2011), 85–95 | DOI | MR | MR | Zbl

[2] Kalantarov V. K., Ladyzhenskaya O. A., “The occurrence of collapse for quasilinear equations of parabolic and hyperbolic types”, Journal of Soviet Mathematics, 10:1 (1978), 53–70 | DOI | MR | Zbl

[3] Sumin V. I., “The features of gradient methods for distributed optimal control problems”, USSR Computational Mathematics and Mathematical Physics, 30:1 (1990), 1–15 | DOI | MR | MR | Zbl

[4] Sumin V. I., Functional Volterra equations in the theory of optimal control of distributed systems, v. I, Volterra equations and controlled initial boundary value problems, Nizhny Novgorod State University, Nizhny Novgorod, 1992

[5] Lions J.-L., Contr{ô}le des systèmes distribués singuliers, Bordas, Paris, 1983 | MR | Zbl

[6] Fursikov A. V., Optimal control of distributed systems. Theory and applications, AMS, Providence, RI, 2000 | MR | Zbl | Zbl

[7] Plotnikov V. I., Sumin V. I., “Optimization of distributed systems in Lebesgue space”, Siberian Mathematical Journal, 22:6 (1981), 913–929 | DOI | MR | Zbl

[8] Chernov A. V., “On the convergence of the conditional gradient method in distributed optimization problems”, Computational Mathematics and Mathematical Physics, 51:9 (2011), 1510–1523 | DOI | MR | Zbl

[9] Chernov A. V., “On total preservation of solvability of controlled Hammerstein-type equation with non-isotone and non-majorizable operator”, Russian Mathematics, 61:6 (2017), 72–81 | DOI | MR | Zbl

[10] Kobayashi T., Pecher H., Shibata Y., “On a global in time existence theorem of smooth solutions to a nonlinear wave equation with viscosity”, Mathematische Annalen, 296:2 (1993), 215–234 | DOI | MR | Zbl

[11] Lu G., “Global existence and blow-up for a class of semilinear parabolic systems: A Cauchy problem”, Nonlinear Analysis: Theory, Methods and Applications, 24:8 (1995), 1193–1206 | DOI | MR | Zbl

[12] Cavalcanti M. M., Domingos Cavalcanti V. N., Soriano J. A., “On existence and asymptotic stability of solutions of the degenerate wave equation with nonlinear boundary conditions”, Journal of Mathematical Analysis and Applications, 281:1 (2003), 108–124 | DOI | MR | Zbl

[13] Saito H., “Global solvability of the Navier–Stokes equations with a free surface in the maximal $L_p$–$L_q$ regularity class”, Journal of Differential Equations, 264:3 (2018), 1475–1520 | DOI | MR | Zbl

[14] Sumin V. I., Optimization of controlled generalized Volterra systems, Cand. Sci. (Phys. and Math.) Dissertation, Gorkii, 1975, 158 pp. (In Russian)

[15] Sumin V. I., “On functional Volterra equations”, Russian Mathematics, 39:9 (1995), 65–75 | MR | Zbl

[16] Sumin V. I., Functional Volterra equations in the mathematical theory of optimal control of distributed systems, Dr. Sci. (Phys. and Math.) Dissertation, Nizhny Novgorod, 1998, 346 pp. (In Russian)

[17] Sumin V. I., “Controlled functional Volterra equations in Lebesgue spaces”, Vestnik Nizhegorodskogo Universiteta. Seriya Matematicheskoe Modelirovanie i Optimal'noe Upravlenie, 1998, no. 2(19), 138–151 (in Russian)

[18] Sumin V. I., Chernov A. V., Volterra operator equations in Banach spaces: the stability of existence of global solutions, Deposited in VINITI 25.04.00, No 1198–V00, NNSU, Nizhny Novgorod, 2000 (in Russian)

[19] Chernov A. V., Volterra operator equations and their application in the optimization theory of hyperbolic systems, Cand. Sci. (Phys. Math.) Dissertation, Nizhny Novgorod, 2000, 177 pp. (In Russian)

[20] Chernov A. V., “A majorant-minorant criterion for the total preservation of global solvability of a functional operator equation”, Russian Mathematics, 56:3 (2012), 55–65 | DOI | MR | Zbl

[21] Chernov A. V., “On total preservation of global solvability for a Goursat problem associated with a controlled semilinear pseudoparabolic equation”, Vladikavkazskii Matematicheskii Zhurnal, 16:3 (2014), 55–63 (in Russian) | MR | Zbl

[22] Chernov A. V., “On the totally global solvability of a controlled Hammerstein type equation with a varied linear operator”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 25:2 (2015), 230–243 (in Russian) | DOI | Zbl

[23] Chernov A. V., “On a majorant–minorant criterion for the total preservation of global solvability of distributed controlled systems”, Differential Equations, 52:1 (2016), 111–121 | DOI | DOI | MR | MR | Zbl

[24] Sumin V. I., “The problem of sustainability of existence global solutions of controlled boundary value problems and Volterra functional equations”, Vestnik Nizhegorodskogo Universiteta. Matematika, 2003, no. 1, 91–107 (in Russian) | Zbl

[25] Sumin V. I., Chernov A. V., “Volterra functional-operator equations in the theory of optimization of distributed systems”, Systems Dinamics and Control Processes, SDCP-2014, Proceedings of Int. Conf. Dedicated to the 90th Anniversary of the birth of Acad. N. N. Krasovskii, UMTS UPI, Yekaterinburg, 2015, 293–300 (in Russian)

[26] Sumin V. I., “Controlled Volterra functional equations and the contraction mapping principle”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 25, no. 1, 2019, 262–278 (in Russian) | DOI

[27] Chernov A. V., “Preservation of the solvability of a semilinear global electric circuit equation”, Computational Mathematics and Mathematical Physics, 58:12 (2018), 2018–2030 | DOI | DOI | MR | Zbl

[28] Sumin V. I., “Equiquasinilpotency: definitions, conditions, examples of application”, Vestnik Tambovskogo Universiteta. Seriya Estestvennye i Tekhnicheskie Nauki, 15:1 (2010), 453–466 (in Russian)

[29] Chernov A. V., “On total preservation of global solvability of a differential operator equation”, Prikladnaya Matematika i Voprosy Upravleniya, 2017, no. 2, 94–111 (in Russian)

[30] Chernov A. V., “On totally global solvability of controlled second kind operator equation”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 30:1 (2020), 92–111 (in Russian) | DOI | MR

[31] Sumin V. I., “Volterra functional-operator equations in the theory of optimal control of distributed systems”, IFAC-PapersOnLine, 51:32 (2018), 759–764 | DOI

[32] Balakrishnan A. V., Applied functional analysis, Springer-Verlag, New York–Heidelberg–Berlin, 1976 | MR | MR | Zbl

[33] Hille E., Phillips R. S., Functional analysis and semi-groups, American Mathematical Society (AMS), Providence, R. I., 1957 | MR | Zbl

[34] S. G. Krein (ed.), Functional analysis, Nauka, M., 1979 | MR

[35] Gajewski H., Gr{ö}ger K., Zacharias K., Nonlinear operator equations and operator differential equations, Akademie, Berlin, 1974 | Zbl

[36] Krein S. G., Linear differential equations in a Banach space, Nauka, M., 1967

[37] Ramaswamy M., Shaiju A. J., “Construction of approximate saddle-point strategies for differential games in a Hilbert space”, Journal of Optimization Theory and Applications, 141:2 (2009), 349–370 | DOI | MR | Zbl

[38] Dautray R., Lions J.-L., Mathematical analysis and numerical methods for science and technology, v. 5, Evolution problems, Springer-Verlag, Berlin, 1992 | MR | Zbl

[39] Brezis H., Functional analysis, Sobolev spaces and partial differential equations, Springer, New York, 2011 | DOI | MR | Zbl