Mots-clés : membrane, normal oscillations.
@article{VUU_2021_31_2_a10,
author = {D. O. Tsvetkov},
title = {The problem of normal oscillations of a viscous stratified fluid with an elastic membrane},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {311--330},
year = {2021},
volume = {31},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a10/}
}
TY - JOUR AU - D. O. Tsvetkov TI - The problem of normal oscillations of a viscous stratified fluid with an elastic membrane JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2021 SP - 311 EP - 330 VL - 31 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a10/ LA - ru ID - VUU_2021_31_2_a10 ER -
%0 Journal Article %A D. O. Tsvetkov %T The problem of normal oscillations of a viscous stratified fluid with an elastic membrane %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2021 %P 311-330 %V 31 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a10/ %G ru %F VUU_2021_31_2_a10
D. O. Tsvetkov. The problem of normal oscillations of a viscous stratified fluid with an elastic membrane. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 2, pp. 311-330. http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a10/
[1] Lu D., Takizawa A., Kondo S., “Overflow-induced vibration of a weir coupled with sloshing in a downstream tank”, Journal of Fluids and Structures, 11:4 (1997), 367–393 | DOI
[2] Lakis A. A., Pa{ï}doussis M. P., “Free vibration of cylindrical shells partially filled with liquid”, Journal of Sound and Vibration, 19:1 (1971), 1–15 | DOI | MR | Zbl
[3] Balendra T., Ang K. K., Paramasivam P., Lee S. L., “Free vibration analysis of cylindrical liquid storage tanks”, International Journal of Mechanical Sciences, 24:1 (1982), 47–59 | DOI | Zbl
[4] Cheung Y. K., Zhou D., “Coupled vibratory characteristics of a rectangular container bottom plate”, Journal of Fluids and Structures, 14:3 (2000), 339–357 | DOI
[5] Cheung Y. K., Zhou D., “Hydroelastic vibration of a circular container bottom plate using the Galerkin method”, Journal of Fluids and Structures, 16:4 (2002), 561–580 | DOI
[6] Bauer H. F., Eidel W., “Hydroelastic vibrations in a two-dimensional rectangular container filled with frictionless liquid and a partly elastically covered free surface”, Journal of Fluids and Structures, 19:2 (2004), 209–220 | DOI
[7] Kopachevsky N. D., Krein S. G., Operator approach to linear problems of hydrodynamics, v. 1, Self-adjoint problems for an ideal fluid, Birkh{ä}user, Basel, 2001 | DOI | MR | Zbl
[8] Kopachevsky N. D., Krein S. G., Operator approach to linear problems of hydrodynamics, v. 2, Not self-adjoint problems for a viscous fluid, Birkh{ä}user, Basel, 2003, 444 pp. | DOI | MR | Zbl
[9] Zhang Y., Wen J., Xiao Y., Wen X., Wang J., “Theoretical investigation of the sound attenuation of membrane-type acoustic metamaterials”, Physics Letters A, 376:17 (2012), 1489–1494 | DOI
[10] Tariverdilo S., Mirzapour J., Shahmardani M., Rezazadeh G., “Free vibration of membrane/bounded incompressible fluid”, Applied Mathematics and Mechanics, 33:9 (2012), 1167–1178 | DOI | MR
[11] Tarazaga P. A., Johnson M. E., Inman D. J., “Experimental validation of the vibro-acoustic model of a pressurized membrane”, Mechanical Systems and Signal Processing, 45:2 (2014), 330–345 | DOI
[12] Eftekhari S. A., “A differential quadrature procedure for free vibration of circular membranes backed by a cylindrical fluid-filled cavity”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39:4 (2017), 1119–1137 | DOI | MR
[13] Kononov Yu. N. Dzhukha Yu. A., “Influence of overload on axisymmetric oscillations of a circular membrane on the free surface of fluid in a cylindrical tank”, Zbirnyk Prats' Instytutu Matematyky NAN Ukrainy, 14:2 (2017), 32–41 (in Russian) | Zbl
[14] Amaouche M., Abderrahmane H. A., “An exact eigenfrequency equation for the oscillations of a viscous fluid contained in an open and rectangular vessel with a flexible wall”, European Journal of Mechanics — B/Fluids, 70 (2018), 1–5 | DOI | MR | Zbl
[15] Kononov Yu. N., Shevchenko V. P., Dzhukh Yu. O., “Axially symmetric vibrations of elastic annular bases and a perfect two-layer liquid in a rigid annular cylindrical vessel”, Journal of Mathematical Sciences, 240:1 (2019), 98–112 | DOI | MR
[16] Essaouini H., El Bakkali L., Capodanno P., “Small oscillations of an ideal liquid contained in a vessel closed by an elastic circular plate, in uniform rotation”, Theoretical and Applied Mechanics, 44:1 (2017), 35–49 | DOI | MR | Zbl
[17] Tsvetkov D. O., “Oscillations of an ideal stratified fluid with an elastic membrane”, Dinamicheskie Sistemy (Simferopol'), 9(37):1 (2019), 26–45 (in Russian) | Zbl | Zbl
[18] Kononov Yu. N., Dzhukha Yu. O., “Vibrations of two-layer ideal liquid in a rigid cylindrical vessel with elastic bases”, Journal of Mathematical Sciences (New York), 246:3 (2020), 365–383 | DOI | MR | Zbl
[19] Choa I. H., Kimb M. H., “Effect of a bottom-hinged, top-tensioned porous membrane baffle on the sloshing reduction in a rectangular tank”, Applied Ocean Research, 104 (2020), 102345 | DOI
[20] Krejn M. G., Langer G. K., “A contribution to the theory of quadratic pencils of self-adjoint operators”, Soviet Mathematics. Doklady, 5 (1964), 266–269 | MR | Zbl | Zbl
[21] Krejn S. G., “Oscillations of a viscous fluid in a container”, Doklady Akademii Nauk SSSR, 159 (1964), 266–269 (in Russian)
[22] Gabov S. A., Malysheva G. Yu., “On a spectral problem connected with the oscillations of a viscous stratified fluid”, USSR Computational Mathematics and Mathematical Physics, 24:3 (1984), 170–174 | DOI | MR | Zbl
[23] Essaouini H., El Bakkali L., Capodanno P., “Mathematical study of the small oscillations of two nonmixing fluids, the lower inviscid, the upper viscoelastic, in an open container”, Journal of Mathematical Fluid Mechanics, 19:4 (2017), 645–657 | DOI | MR | Zbl
[24] Zakora D. A., “Spectral analysis of a viscoelasticity problem”, Computational Mathematics and Mathematical Physics, 58:11 (2018), 1761–1774 | DOI | DOI | MR | Zbl
[25] Tsvetkov D. O., “Crumbled ice on the surface of a multilayered fluid”, Siberian Electronic Mathematical Reports, 17 (2020), 777–801 | DOI | MR | Zbl
[26] Kopachevskii N. D., Orlova L. D., Pashkova Yu. S., “Differential-operator and integro-differential equations in the problem of small oscillations of hydrodynamic systems”, Uchenye Zapiski Simferopol'skogo Universiteta, 41:2 (1995), 98–108 (in Russian)
[27] Tsvetkov D. O., “On an initial-boundary value problem which arises in the dynamics of a viscous stratified fluid”, Russian Mathematics, 64:8 (2020), 50–63 | DOI | DOI | MR | Zbl
[28] Kopachevsky N. D., “Abstract Green formulas for triples of Hilbert spaces and sesquilinear forms”, Journal of Mathematical Sciences, 225:2 (2017), 226–264 | DOI | MR | Zbl
[29] Kopachevskii N. D., Myshkis A. D., “Hydrodynamics in weak fields of force. The small oscillations of a viscous liquid in a potential field of force”, USSR Computational Mathematics and Mathematical Physics, 6:6 (1966), 150–161 | DOI | MR
[30] Gokhberg I. C., Krein M. G., Introduction to the theory of linear non-self-adjoint operators in Hilbert space, Nauka, M., 1965