Mots-clés : optimal solution
@article{VUU_2021_31_2_a0,
author = {M. S. Afanasova and V. V. Obukhovskii and G. G. Petrosyan},
title = {On a generalized boundary value problem for a feedback control system with infinite delay},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {167--185},
year = {2021},
volume = {31},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a0/}
}
TY - JOUR AU - M. S. Afanasova AU - V. V. Obukhovskii AU - G. G. Petrosyan TI - On a generalized boundary value problem for a feedback control system with infinite delay JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2021 SP - 167 EP - 185 VL - 31 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a0/ LA - ru ID - VUU_2021_31_2_a0 ER -
%0 Journal Article %A M. S. Afanasova %A V. V. Obukhovskii %A G. G. Petrosyan %T On a generalized boundary value problem for a feedback control system with infinite delay %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2021 %P 167-185 %V 31 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a0/ %G ru %F VUU_2021_31_2_a0
M. S. Afanasova; V. V. Obukhovskii; G. G. Petrosyan. On a generalized boundary value problem for a feedback control system with infinite delay. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 2, pp. 167-185. http://geodesic.mathdoc.fr/item/VUU_2021_31_2_a0/
[1] Afanasova M. S., Petrosyan G. G., “On the boundary value problem for functional differential inclusion of fractional order with general initial condition in a Banach space”, Russian Mathematics, 63:9 (2019), 1–11 | DOI | DOI | MR | Zbl
[2] Borisovich Yu. G., Gel'man B. D., Myshkis A. D., Obukhovskii V. V., “Topological methods in the fixed-point theory of multi-valued maps”, Russian Mathematical Surveys, 35:1 (1980), 65–143 | DOI | MR | Zbl
[3] Borsuk K., Theory of retracts, PWN, Warsaw, 1967 | MR | Zbl
[4] Myshkis A. D., “Generalizations of the theorem on a fixed point of a dynamical system inside of a closed trajectory”, Mat. Sb. (N. S.), 34(76):3 (1954), 525–540 (in Russian) | Zbl
[5] Petrosyan G. G., “On antiperiodic boundary value problem for a semilinear differential inclusion of fractional order with a deviating argument in a Banach space”, Ufa Mathematical Journal, 12:3 (2020), 69–80 | DOI | MR | Zbl
[6] Afanasova M., Liou Y.-Ch., Obukhoskii V., Petrosyan G., “On controllability for a system governed by a fractional-order semilinear functional differential inclusion in a Banach space”, Journal of Nonlinear and Convex Analysis, 20:9 (2019), 1919–1935 http://www.yokohamapublishers.jp/online2/opjnca/vol20/p1919.html | MR | Zbl
[7] Appell J., López B., Sadarangani K., “Existence and uniqueness of solutions for a nonlinear fractional initial value problem involving Caputo derivatives”, Journal of Nonlinear and Variational Analysis, 2:1 (2018), 25–33 | DOI | Zbl
[8] Arutyunov A. V., Obukhovskii V. V., Convex and set-valued analysis, De Gruyter, Berlin, 2017 | DOI | MR | Zbl
[9] Benedetti I., Obukhovskii V., Taddei V., “On noncompact fractional order differential inclusions with generalized boundary condition and impulses in a Banach space”, Journal of Function Spaces, 2015 (2015), 1–10 | DOI | MR
[10] Getmanova E., Obukhovskii V., Yao J.-Ch., “A random topological fixed point index for a class of multivalued maps”, Applied Set-Valued Analysis and Optimization, 1:2 (2019), 95–103 | DOI
[11] Górniewicz L., Topological fixed point theory of multivalued mappings, Springer, Dordrecht, 2006 | DOI | MR
[12] Hale J. K., Kato J., “Phase space for retarded equations with infinite delay”, Funkcialaj Ekvacioj. Serio Internacia, 21 (1978), 11–41 | MR | Zbl
[13] Hino Y., Murakami S., Naito T., Functional differential equations with infinite delay, Springer, Berlin, 1991 | DOI | MR | Zbl
[14] Hyman D., “On decreasing sequences of compact absolute retracts”, Fundamenta Mathematicae, 64:1 (1969), 91–97 | DOI | MR | Zbl
[15] Kamenskii M. I., Obukhovskii V. V., Zecca P., Condensing multivalued maps and semilinear differential inclusions in Banach spaces, De Gruyter, Berlin, 2001 | DOI | MR | Zbl
[16] Kamenskii M., Obukhovskii V., Petrosyan G., Yao J.-Ch., “Boundary value problems for semilinear differential inclusions of fractional order in a Banach space”, Applicable Analysis, 97:4 (2018), 571–591 | DOI | MR | Zbl
[17] Kamenskii M., Obukhovskii V., Petrosyan G., Yao J.-Ch., “On approximate solutions for a class of semilinear fractional-order differential equations in Banach spaces”, Fixed Point Theory and Applications, 2017:1 (2017), 28 | DOI | MR | Zbl
[18] Kamenskii M., Obukhovskii V., Petrosyan G., Yao J.-Ch., “Existence and approximation of solutions to nonlocal boundary value problems for fractional differential inclusions”, Fixed Point Theory and Applications, 2019:1 (2019), 2 | DOI | MR | Zbl
[19] Kamenskii M., Obukhovskii V., Petrosyan G., Yao J.-Ch., “On a periodic boundary value problem for a fractional-order semilinear functional differential inclusions in a Banach space”, Mathematics, 7:12 (2019), 1146 | DOI | MR
[20] Ke T. D., Obukhovskii V. V., Wong N.-Ch., Yao J.-Ch., “On a class of fractional order differential inclusions with infinite delays”, Applicable Analysis, 92:1 (2013), 115–137 | DOI | MR | Zbl
[21] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and applications of fractional differential equations, Elsevier Science, Amsterdam, 2006 | MR | Zbl
[22] Miller K. S., Ross B., An introduction to the fractional calculus and fractional differential equations, Wiley-Interscience, New York, 1993 | MR | Zbl
[23] Obukhovskii V., Gel'man B., Multivalued maps and differential inclusions. Elements of theory and applications, World Scientific, Singapore, 2020 | DOI | MR | Zbl
[24] Obukhovskii V. V., “Semilinear functional-differential inclusions in a Banach space and controlled parabolic systems”, Soviet Journal of Automation and Information Sciences, 24:3 (1991), 71–79 | MR | Zbl
[25] Podlubny I., Fractional differential equations, Academic Press, San Diego, 1999 | MR | Zbl
[26] Zhang Z., Liu B., “Existence of mild solutions for fractional evolution equations”, Fixed Point Theory, 15:1 (2014), 325–334 http://www.math.ubbcluj.ro/ñodeacj/vol__15(2014)_no__1.php | MR | Zbl
[27] Zhou Y., Fractional evolution equations and inclusions: analysis and control, Academic Press, London, 2016 | DOI | MR | Zbl