Mots-clés : web navigation assistant.
@article{VUU_2021_31_1_a8,
author = {N. M. Ali and A. M. Gadallah and H. A. Hefny and B. A. Novikov},
title = {Online web navigation assistant},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {116--131},
year = {2021},
volume = {31},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_1_a8/}
}
TY - JOUR AU - N. M. Ali AU - A. M. Gadallah AU - H. A. Hefny AU - B. A. Novikov TI - Online web navigation assistant JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2021 SP - 116 EP - 131 VL - 31 IS - 1 UR - http://geodesic.mathdoc.fr/item/VUU_2021_31_1_a8/ LA - en ID - VUU_2021_31_1_a8 ER -
%0 Journal Article %A N. M. Ali %A A. M. Gadallah %A H. A. Hefny %A B. A. Novikov %T Online web navigation assistant %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2021 %P 116-131 %V 31 %N 1 %U http://geodesic.mathdoc.fr/item/VUU_2021_31_1_a8/ %G en %F VUU_2021_31_1_a8
N. M. Ali; A. M. Gadallah; H. A. Hefny; B. A. Novikov. Online web navigation assistant. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 1, pp. 116-131. http://geodesic.mathdoc.fr/item/VUU_2021_31_1_a8/
[1] R. Cooley, B. Mobasher, J. Srivastava, “Web mining: information and pattern discovery on the World Wide Web”, Proceedings Ninth IEEE International Conference on Tools with Artificial Intelligence, IEEE, 1997, 558–567 | DOI
[2] P. Resnick, H. R. Varian, “Recommender systems”, Communications of the ACM, 40:3 (1997), 56–58 | DOI
[3] R. Burke, “Hybrid recommender systems: survey and experiments”, User Modeling and User-Adapted Interaction, 12:4 (2002), 331–370 | DOI | Zbl
[4] N. M. A. Al-Yazeed, A. M. Gadallah, H. A. Hefny, “A hybrid recommendation model for web navigation”, 2015 IEEE Seventh International Conference on Intelligent Computing and Information Systems, ICICIS, IEEE, 2015, 552–560 | DOI
[5] J. L. Herlocker, J. A. Konstan, A. Borchers, J. Ried, “An algorithmic framework for performing collaborative filtering”, Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR'99, ACM, 1999, 230–237 | DOI
[6] M. Deshpande, G. Karypis, “Item-based top-N recommendation algorithms”, ACM Transactions on Information Systems (TOIS), 22:1 (2004), 143–177 | DOI
[7] M. Jafari, F. S. Sabzchi, A. J. Irani, “Applying web usage mining techniques to design effective web recommendation systems: a case study”, Advances in Computer Science: International Journal (ACSIJ), 3:2 (2014), 78–90 http://www.acsij.org/acsij/article/view/216
[8] M. D. D. Sarria, E. L. Guzman, “A recommendation-based web usage mining model for a university community”, 2012 Eighth Latin American Web Congress, IEEE, 2012, 71–78 | DOI
[9] X. Fu, J. Budzik, K. J. Hammond, “Mining navigation history for recommendation”, Proceedings of the 5th International Conference on Intelligent User Interfaces, ACM, 2000, 106–112 | DOI
[10] Y.-H. Wu, Y.-C. Chen, A. L. P. Chen, “Enabling personalized recommendation on the Web based on user interests and behaviors”, Proceedings Eleventh International Workshop on Research Issues in Data Engineering. Document Management for Data Intensive Business and Scientific Applications, RIDE 2001, IEEE, 2001, 17–24 | DOI
[11] M. P. Singh, The practical handbook of internet computing, Chapman and Hall/CRC, New York, 2004 | DOI | MR
[12] A. Anitha, K. Nallaperumal, “A web usage mining based recommendation model for learning management systems”, 2010 IEEE International Conference on Computational Intelligence and Computing Research, IEEE, 2010, 1–4 | DOI
[13] B. Nigam, S. Tokekar, S. Jain, “Evaluation of models for predicting user's next request in web usage mining”, International Journal on Cybernetics and Informatics (IJCI), 4:1 (2015), 1–13 | DOI | MR
[14] R. Forsati, M. R. Meybodi, “Effective page recommendation algorithms based on distributed learning automata and weighted association rules”, Expert Systems with Applications, 37:2 (2010), 1316–1330 | DOI
[15] B. Mobasher, H. Dai, T. Luo, M. Nakagawa, “Effective personalization based on association rule discovery from web usage data”, Proceedings of the 3rd International Workshop on Web Information and Data Management, WIDM'01, ACM, 2001, 9–15 | DOI
[16] W. Lin, S. A. Alvarez, C. Ruiz, “Collaborative recommendation via adaptive association rule mining”, Proceedings of the International Workshop on Web Mining for E-Commerce-Challenges and Opportunities, WebKDD'2000, 2000 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.7811
[17] S. G. Langhnoja, M. P. Barot, D. B. Mehta, “Web usage mining using association rule mining on clustered data for pattern discovery”, International Journal of Data Mining Techniques and Applications, 2:1 (2013), 141–150 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.678.4780&rep=rep1&type=pdf
[18] C. Lakshminarayan, R. Kosuru, M. Hsu, “Modeling complex clickstream data by stochastic models: theory and methods”, Proceedings of the 25th International Conference Companion on World Wide Web, International World Wide Web Conferences Steering Committee, 2016, 879–884 | DOI
[19] J. Vellingiri, S. C. Pandian, “A survey on web usage mining”, Global Journal of Computer Science and Technology, 11:4 (2011), 66–72 https://computerresearch.org/index.php/computer/article/view/710
[20] M. Géry, H. Haddad, “Evaluation of web usage mining approaches for user's next request prediction”, Proceedings of the 5th ACM International Workshop on Web Information and Data Management, WIDM'03, ACM, 2003, 74–81 | DOI
[21] R. Bhushan, R. Nath, “Recommendation of optimized web pages to users using Web Log mining techniques”, 2013 3rd IEEE International Advance Computing Conference, IACC, IEEE, 2013, 1030–1033 | DOI
[22] D. Dhyani, S. S. Bhowmick, W.-K. Ng, “Modelling and predicting Web page accesses using Markov processes”, Proceedings of the 14th International Workshop on Database and Expert Systems Applications, IEEE, 2003, 332–336 | DOI
[23] H. G. Ko, E. Kim, I. Y. Ko, D. Chang, “Semantically-based recommendation by using semantic clusters of users viewing history”, Proceedings of the International Conference on Big Data and Smart Computing, BIGCOMP, 2014, 83–87 | DOI
[24] S. Chimphlee, N. Salim, M. S. Ngadiman, W. Chimphlee, S. Srinoy, “Rough sets clustering and Markov model for web access prediction”, Proceedings of the Postgraduate Annual Research Seminar, 2006, 470–475 http://eprints.utm.my/id/eprint/3370/
[25] F. Khalil, J. Li, H. Wang, “A framework of combining Markov model with association rules for predicting web page accesses”, Proceedings of the 5th Australasian Conference on Data Mining and Analystics, AusDM'06, Australian Computer Society, 2006, 177–184 https://dl.acm.org/doi/10.5555/1273808.1273832
[26] A. Maratea, A. Petrosino, “An heuristic approach to page recommendation in web usage mining”, Proceedings of the 9th International Conference on Intelligent Systems Design and Applications, ISDA, 2009, 1043–1048 | DOI
[27] V. V. R. M. Rao, V. V. Kumari, “An efficient hybrid successive Markov model for predicting web user usage behavior using web usage mining”, International Journal of Data Engineering (IJDE), 1:5 (2010), 43–62 http://www.cscjournals.org/library/manuscriptinfo.php?mc=IJDE-25 | MR
[28] A. Anitha, “A new web usage mining approach for next page access prediction”, International Journal of Computer Applications (IJCA), 8:11 (2010), 7–10 https://www.ijcaonline.org/archives/volume8/number11/1252-1700 | DOI
[29] M. Jalali, N. Mustapha, M. N. Sulaiman, A. Mamat, “WebPUM: A Web-based recommendation system to predict user future movements”, Expert Systems with Applications, 37:9 (2010), 6201–6212 | DOI
[30] Y. AlMurtadha, M. N. B. Sulaiman, N. Mustapha, N. I. Udzir, “IPACT: Improved web page recommendation system using profile aggregation based on clustering of transactions”, American Journal of Applied Sciences, 8:3 (2011), 277–283 | DOI
[31] R. Mishra, P. Kumar, B. Bhasker, “A web recommendation system considering sequential information”, Decision Support Systems, 75:1 (2015), 1–10 | DOI
[32] N. M. Ali, A. M. Gadallah, H. A. Hefny, B. Novikov, “An integrated framework for web data preprocessing towards modeling user behavior”, Proceedings of the 2020 International Multi-Conference on Industrial Engineering and Modern Technologies, FarEastCon, IEEE, 2020, 1–8 | DOI
[33] C. Iliou, T. Kostoulas, T. Tsikrika, V. Katos, S. Vrochidis, Y. Kompatsiaris, “Towards a framework for detecting advanced web bots”, Proceedings of the 14th International Conference on Availability, Reliability and Security, ACM, 2019, 18 | DOI
[34] P. Patel, M. Parmar, “Improve heuristics for user session identification through web server log in web usage mining”, International Journal of Computer Science and Information Technologies, 5:3 (2014), 3562–3565 http://ijcsit.com/docs/Volume5/vol5issue03/ijcsit20140503201.pdf
[35] A. Ganibardi, C. A. Ali, “Weblog data structuration: A stream-centric approach for improving session reconstruction quality”, Proceedings of the 20th International Conference on Information Integration and Web-based Applications and Services, ACM, 2018, 263–271 | DOI
[36] M. D. Leoni, S. Dundar, “Event-log abstraction using batch session identification and clustering”, Proceedings of the 35th Annual ACM Symposium on Applied Computing, ACM, 2020, 36–44 | DOI
[37] V. Chitraa, A. S. Thanamani, “A novel technique for sessions identification in web usage mining preprocessing”, International Journal of Computer Applications, 34:9 (2011), 23–27 https://www.ijcaonline.org/archives/volume34/number9/4127-5958
[38] Z. Markov, D. T. Larose, Data mining the web: uncovering patterns in web content, structure, and usage, John Wiley and Sons, 2007 | DOI
[39] “Microsoft Docs: The Modern Documentation Service for Microsoft”, IIS Logging, 2018 (last access 01 Feb., 2020) https://docs.microsoft.com/en-us/windows/win32/http/iis-logging