An approach in studying gyrostat motion with variable gyrostatic moment
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 1, pp. 102-115 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of the motion of a gyrostat with a fixed point and a variable gyrostatic moment under the action of gravity force is considered. A new method for integrating the equations of motion of a system consisting of a carrier body and three rotors that rotate around the main axes is proposed. The method can be attributed to the method of variation of the constant in the function for the gyrostatic moment, which linearly depends on the vector of vertical. In case of a constant multiplier, the gyrostatic moment satisfies the Poisson equation, and its variation is found from the integral of areas. The original equations have been reduced to a fifth-order system. New solutions of these equations are obtained in the case of a spherical mass distribution for the gyrostat and for the precessional motions of a carrier body. An explicit form of the gyrostatic moment is established for the case of three invariant relations.
Keywords: gyrostat, gravity field, reduction of equations, spherical gyrostat.
Mots-clés : invariant relations
@article{VUU_2021_31_1_a7,
     author = {G. V. Gorr},
     title = {An approach in studying gyrostat motion with variable gyrostatic moment},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {102--115},
     year = {2021},
     volume = {31},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2021_31_1_a7/}
}
TY  - JOUR
AU  - G. V. Gorr
TI  - An approach in studying gyrostat motion with variable gyrostatic moment
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2021
SP  - 102
EP  - 115
VL  - 31
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2021_31_1_a7/
LA  - ru
ID  - VUU_2021_31_1_a7
ER  - 
%0 Journal Article
%A G. V. Gorr
%T An approach in studying gyrostat motion with variable gyrostatic moment
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2021
%P 102-115
%V 31
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2021_31_1_a7/
%G ru
%F VUU_2021_31_1_a7
G. V. Gorr. An approach in studying gyrostat motion with variable gyrostatic moment. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 31 (2021) no. 1, pp. 102-115. http://geodesic.mathdoc.fr/item/VUU_2021_31_1_a7/

[1] W. Thomson, “On the motion of rigid solids in a liquid circulating irrotationally through perforations in them or in any fixed solid”, Proceeding of the Royal Society of Edinburg, 7 (1872), 668–682 | DOI

[2] V. Volterra, “Sur la theorie des variations des latitudes”, Acta Mathematica, 22 (1899), 201–357 | DOI | MR

[3] N. E. Zhukovskii, “On the motion of a solid body having cavities filled with a homogeneous dropping liquid”, Collected works, v. 1, Gostekhizdat, M., 1949, 31–152 (in Russian)

[4] A. Gray, A treatise on gurostatics and rotational motion. Theory and applications, Dover Publications, New York, 1959 | MR

[5] V. V. Rumyantsev, “About orientation control and satellite stabilization by rotors”, Vestnik Moskovskogo Universiteta. Seriya I. Matematika, Mekhanika, 1970, no. 2, 83–96 (in Russian) | Zbl

[6] P. V. Kharlamov, “On the equations of motion of a system of solids”, Izvestiya Akademii Nauk SSSR, Mekhanika Tverdogo Tela, 1972, no. 4, 52–73 (in Russian) | MR

[7] J. Wittenburg, Dynamics of systems of rigid bodies, B.G. Teubner, Stuttgart, 1977 | MR | MR | Zbl

[8] G. V. Gorr, A. V. Maznev, G. A. Kotov, The movement of the gyrostat with a variable gyrostatic moment, Institute of Applied Mathematics and Mechanics, Donetsk, 2017

[9] T. Levy-Civita, U. Amaldi, Lezioni di Meccanica Razionale, Part 2, v. 2, Dinamica dei sistemi con un numero finito di gradi di libertà, Bologna, 1927 (In Italian) | MR

[10] A. V. Borisov, I. S. Mamaev, Rigid body dynamics, De Gruyter, 2019 | DOI | MR | MR | Zbl

[11] T. R. Kane, R. C. Fowler, “Equivalence of two gyrostatic stability problems”, Journal of Applied Mechanics, 37:4 (1970), 1146–1147 | DOI

[12] R. E. Roberson, “The equivalence of two classical problems of free spinning gyrostats”, Journal of Applied Mechanics, 38:3 (1971), 1146–1147 | DOI

[13] V. S. Aslanov, A. V. Doroshin, “The motion of a system of coaxial bodies of variable mass”, Journal of Applied Mathematics and Mechanics, 68:6 (2004), 899–908 | DOI | MR | Zbl

[14] V. S. Aslanov, A. V. Doroshin, “Two cases of motion of an unbalanced gyrostat”, Mechanics of Solids, 41:4 (2006), 29–39 http://mtt.ipmnet.ru/en/Issues.php?y=2006&n=4&p=29

[15] G. V. Gorr, “On three invariant relations of the equations of motion of a body in a potential field of force”, Mechanics of Solids, 54:2 (2019), 234–244 | DOI | DOI | Zbl

[16] G. V. Gorr, “On three invariant of the equations of motion of a body in a potential field of force”, Mechanics of Solid, 54, Suppl. 2 (2019), S104–S114

[17] G. V. Gorr, D. N. Tkachenko, E. K. Shchetinina, “Research on the motion of a body in a potential force field in the case of three invariant relations”, Russian Journal of Nonlinear Dynamics, 15:3 (2019), 327–342 | DOI | MR | Zbl

[18] N. Kowalewski, “Eine neue partikulare Lösung der Differentialgleichungen der Bewegung eines schweren starren Körpers um einen festen Punkt”, Mathematische Annalen, 65:4 (1908), 528–537 | DOI | MR | Zbl

[19] V. A. Steklov, “A new particular solution of differential equations of motion of a heavy rigid body with a fixed point”, Trudy Otdeleniya Fizicheskikh Nauk Obshchestva Lyubitelei Estestvoznaniya, 10:1 (1899), 1–3 (in Russian) | MR | Zbl

[20] D. N. Goryachev, “A new particular solution to the problem of the motion of a heavy rigid body around a fixed point”, Trudy Otdeleniya Fizicheskikh Nauk Obshchestva Lyubitelei Estestvoznaniya, 10:1 (1899), 23–24 (in Russian)

[21] P. V. Kharlamov, “Polynomial solutions of the equations of motion of a body with a fixed point”, Journal of Applied Mathematics and Mechanics, 29:1 (1965), 26–35 | DOI | MR | Zbl

[22] G. V. Gorr, A. V. Maznev, The dynamics of a gyrostat having a fixed point, Donetsk National University, Donetsk, 2010

[23] G. V. Gorr, L. V. Kudryashova, L. A. Stepanova, Classical problems in the theory of solid bodies. Their development and current state, Naukova Dumka, Kiev, 1978 | MR

[24] I. N. Gashenenko, G. V. Gorr, A. Kovalev, Classical problems of the dynamics of a rigid body, Naukova Dumka, Kiev, 2012 | MR | Zbl